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Abstract

Dynamic wetting of a liquid deposited on a soft solid is very common in many biological,

medical, and industrial processes. Thus, understanding the interaction between a moving liquid

drop and a soft surface remains crucial, and yet poorly understood. In this context, this

thesis focuses on the wetting dynamics of both biological and simple liquid systems on soft

tailored surfaces. To do so, we first develop and produce soft PDMS solids of tunable stiffness

with a in-house formulation by using pre-polymers of different molecular weight, and cross-

linkers of various silane group concentration. We fully characterise the mechanical properties

of our different gels with classical rheological tools. We use such soft PDMS surface as a

model system with a stiffness comparable to the brain tissue to study the coalescence of phase

separating tau protein droplets. We find that the tau protein droplets behave similarly to

viscous liquid droplets and therefore that their coalescence dynamics can be described by using

the same scaling law. Beyond the relevance of soft and deformable PDMS surfaces for biological

applications, they can also be used to tackle more fundamental questions. For instance, we also

address recent controversies on the underlying theoretical description of static and dynamic

wetting of soft polymer gels. We present measurements of the shapes of moving wetting ridges

obtained with high spatio-temporal resolution, combining different liquid systems on top of

different soft PDMS gels. We find that the ridge shapes fail to collapse with the commonly

used elastocapillary scaling, but for small normal forces, yields a viable prediction of the the

dynamic ridge angles. We demonstrate that neither of the debated theoretical models delivers

a quantiative description, while the capillary extraction of an oil skirt appears to be the most

promising.
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Chapter 1

Introduction

1.1 Motivation

Wetting refers to the behaviour of a liquid in contact with a solid surface and its ability to spread

out for example, as a result of the interactions between the liquid and the surface. Wetting is a

very ubiquitous phenomenon that can be encountered in many situations ranging from natural

phenomena to technological applications. For instance, wetting can be observed for morning

dew drops on leaves. It is also particularly relevant in ink-jet printing [1], adhesives [2], coating

[3] or even biomedical applications [4]. Due to the recent increasing demand for digital printing

and electronic devices, there has been a growing interest in understanding wetting phenomena

[5].

(a)

(b)

Figure 1.1: Applications of dynamic wetting in (a) printing techniques and (b) coating indus-
tries. Republished with permission from [6]
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CHAPTER 1. INTRODUCTION 2

Static wetting refers to the equilibrium state where the liquid is immobile on a surface, and

forms a sessile droplet or a liquid film for example. In contrast, dynamic wetting takes place

when the fluid is moving (or spreading) on the solid surface. This scenario is also very common

in everyday life and is widely used in various industrial applications such as modern nano, 3d,

or bio-printing [6], as illustrated in Figure 1.1 (a). It also significantly affects the coating pro-

cess in industries such as aerospace, marine, automotive, and so on as shown in Figure 1.1 (b) [6].

Soft solid materials like gels, biological tissues and rubbers respond to a stress by deforming

unlike rigid solids. Thus the wetting behaviour of a liquid drop on a soft surface is funda-

mentally very different from that on a rigid surface. Owing to the early works of Lester [7],

Deryagin, et al. [8], and Shanahan, et al. [9], there have been growing efforts to comprehend

the interaction between a liquid drop and a soft surface. Recent developments of microscopic

imaging techniques, such as traction force microscopy [10] or X-ray microscopy [11], have al-

lowed researchers to detect the deformation induced by liquids on soft substrates, and have led

to a great improvement of our understanding of soft wetting.

Despite such huge potential for biological, medical and industrial applications, fundamental

studies on the dynamics of soft wetting are still lacking to this day. With the work presented in

this manuscript, we therefore address this issue by investigating the wetting dynamics on soft

surfaces.

1.2 Objectives

This work focuses on studying fundamental aspects of the dynamics of a contact line on soft

surfaces. First of all, it is therefore a question of producing very soft surfaces capable of easily

deforming under the action of a contact line induced by classical liquids. We developed a

procedure to manufacture tailored soft surfaces using polydimethylsiloxane (PDMS), for which

we can tune the stiffness as desired. With such versatile surfaces, we aim to reach three main

objectives with this research:

1. We aim to investigate and precisely characterise the mechanical properties of the formu-

lated PDMS gels. The relationship between these properties and the stoichiometric ratio

of two reactive functional groups is then discussed. Also, we want to find out how do the

stoichiometric ratio and the stiffness of the gel affect the degree of swelling and extraction

of the network.

2. We aim to study the coalescence of phase separating tau protein droplets on a soft PDMS

surface which can serve as a model system of a soft in-vitro environment. Such phe-

nomenon is particularly relevant to understand the aggregation of these proteins, which

are known to cause neuro-degenerative diseases such as Alzheimer’s disease.

3. We aim to address recent controversies on the theory of static and dynamic wetting of

soft polymer gels through the measurement of the shapes of moving wetting ridges.
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1.3 Outline of this thesis

In Chapter 2, we discuss fundamental theories necessary for this thesis, from wetting on rigid

surfaces to soft solids. Recent debates on the soft wetting are also presented in this chapter.

Chapter 3 describes in details the materials and experimental techniques used for this study.

In particular, we explain how to characterise the rheology of PDMS gels and present the different

setups used to carry out our experiments.

In Chapter 4, we describe our in-house developed recipe for the formulation of soft PDMS

gels, and the results of swelling and extraction experiments of these prepared PDMS samples.

Chapter 5 tackles the coalescence of phase separating tau protein droplets on a soft PDMS

substrate that serves as a model system of soft in-vitro environment with similar stiffness as

the brain tissues. More precisely, we focus on the dynamics of the liquid meniscus bridging two

coalescing droplets. Therefore, we experimentally determine the capillary velocity and compare

it to values from the literature.

Chapter 6 presents our work on the experimental visualisation of moving wetting ridges.

The dynamic liquid contact angle as well as the rotation and opening angles of the solid wetting

ridge are extracted from our experiments. The study of these angles are used to discuss recent

contradictions in the theoretical description of static and dynamic soft wetting.

Finally, the conclusion of this work and the possible future perspectives are discussed in

Chapter 7.





Chapter 2

Surface wetting: theoretical

background

2.1 Wetting on rigid surfaces

2.1.1 Static wetting

Wetting refers to the study of the ability of a liquid deposited on a solid to spread out [12].

When a liquid droplet is resting on a rigid surface, it forms a three-phase contact line of the

surface, liquid and air. On the rigid surface, the liquid droplet such as water adopts a character-

istic spherical cap shape due to surface tension, as illustrated in Figure 2.1. The origin of this

tension can be understood at the molecular level. Liquid molecules in the bulk interact with

each other through cohesive forces that keep the molecules close to one another. However, the

molecules at the liquid-air interface do not have the same amount of interactions, as there are

less number of neighbouring molecules. Therefore they pull each other which creates a tension

parallel to the interface: the surface tension. Surface tension, often called γ, is then a force per

unit of length or an energy per unit of area, and thus can be expressed in Nm−1 or Jm−2. The

spherical shape of water droplet is a result of surface tension that minimises the surface area,

and thus the free energy of the droplet.

Figure 2.1: Three interfacial tensions, γLA, γSL, and γSA acting on three-phase contact line of
a liquid drop. A liquid drop forms Young’s angle θY with the surface

As sketched in Figure 2.1, there are three different surface (interfacial) tensions acting on

the three-phase contact line of a droplet on a surface: liquid-air surface tension γLA, solid-liquid

interfacial tension γSL, and solid-air surface tension γSA. These three interfacial tensions form

5
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a force balance that imposes an angle θY between the liquid and the solid surface, also known

as Young’s angle [13]. This macroscopic contact angle is usually measured with an optical

photograph of a contact region [13]. The force balance at the contact line in the direction

parallel to the surface is given the following relation known as Young’s equation:

γSL + γLA cos θY = γSA. (2.1)

In 1985, Gennes, et al. described two regimes of wetting distinguished by a spreading parameter

S that measures the difference between the surface energy per unit area of the substrate below

the liquid (wet region) and outside of the liquid (dry region) [12]. The spreading parameter is

thus expressed as:

S = γSA − (γSL + γLA) (2.2)

When S > 0, the liquid spreads completely on the substrate, forming a Young’s angle of θY = 0.

This phenomenon is known as a “complete wetting”, as illustrated in Figure 2.2. Partial wetting,

which is the most common case and what we will mainly focus on our study, is observed when

the spreading parameter is larger than 0. The droplet will form the cap shape with θY between

0 and π.

Figure 2.2: Complete wetting of liquid on a solid surface, θY = 0

2.1.2 Dynamic wetting

So far, we have discussed the simple case of the static wetting of a drop on a surface, which

is described by Young’s equation. The question now is: what happens when this liquid drop

moves on the same rigid surface?

There are various ways to induce contact line motion such as inflating or deflating an already

deposited drop [14], tilting a surface to introduce gravitational effect on the drop [15], or spon-

taneous spreading of the drop [16].

Let us now consider that the contact line of a drop on a surface is moving at a speed U .

Figure 2.3 (a) shows the typical evolution of the contact angle as a function of contact line speed

U . The contact angle here is the dynamic equivalent of the Young’s angle for the static case.

In this example, Dussan considered that the contact line is advancing if U > 0, and receding

when U < 0 [17]. This evolution of the contact angles proved that the dynamic contact angle of

a moving liquid drop depends on the contact line velocity. The contact angle always increases

with increasing velocity, i.e. ∂U/∂θ. This first example shows that the dynamics of a moving

drop requires a more complex description and that Young’s equation no longer applies to this

dynamic system [17, 20].
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(a) (b)

Figure 2.3: (a) Evolution of advancing θA and receding θR contact angles as a function of contact
line speed. Republished with permission from [17] (b) Radius of a spreading silicone oil drop as
function of time described by Tanner’s law. Republished with permission from [18]. Inset: An
image of a silicone oil drop spreading on a glass substrate. Republished with permission from
[19]

Contact line motion can also be induced when a liquid drop is deposited on a solid surface.

The drop actually spreads and its contact angle decreases until it reaches an equilibrium contact

angle θeq. Due to its ubiquity in nature and in technological applications, there have been

numerous experimental and theoretical studies to understand the spreading of drops on surfaces

[17, 19, 21, 22]. Figure 2.3 (b) shows a silicone oil drop spreading on a glass surface and the

evolution of its radius as a function of time. The radius of the silicone oil drop increases over

time before reaching complete wetting of the glass substrate at equilibrium, for which θeq = 0◦.

The temporal evolution of the droplet radius follows a power law with an exponent 1/10. Such

power law dependence of radius of a droplet spreading on a surface is known as Tanner’s law

and is given by [21]:

R(t) ∝ tn. (2.3)

The exponent n = 1/10 arises when the droplet radius R is smaller than the capillary length

ℓc (ℓc =
√
γ/ρg when γ is the liquid surface tension, ρ is the liquid density, and g is the

gravitational accelaration). The driving force of this spreading drop is its surface tension and

the energy dissipation occurs at the contact line [23].

Tanner’s law shows that the spreading rate of a drop does not depend on the available

surface energy [18]. To explain such power law dependence with very small exponent n, the

rate of energy dissipation needs to be considered near the contact line [18]. It was found that the

rate of energy dissipation increases very rapidly near the contact line, leading to a divergence

of energy dissipation [24]. The basis of energy dissipation of a moving contact line on a rigid

surface is discussed in two separate theories: hydrodynamic and molecular-kinetic theories [24,

25, 12, 18]. These theories give rise to different scaling exponent n. The detailed explanation

of these two different theories is out of scope of this thesis, and will not be discussed further.
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2.2 Wetting on soft surfaces

So far, we have presented the wetting of liquid drops on idealised (rigid) surfaces. However, many

surfaces such as biological tissues are actually soft. The wetting behaviour of a liquid droplet on

a soft surface differs from that on a rigid surface due to the ability of the soft solid to deform. In

this section, we will first introduce the basic elements of elastic and viscoelastic theory needed

to describe the deformation of a soft surface. Then we will discuss the characteristic wetting

behaviour on such soft surfaces in both static and dynamic scenarios.

2.2.1 From purely elastic to viscoelastic materials

Elastic theory

The ability of a soft solid to deform under an applied force and to regain its original shape is

known as elasticity.

(a) (b)

Figure 2.4: Schematic representation of the deformation of a purely elastic solid (a) under a
given force F acting normally to its cross-section and (b) under a shear force

Let us consider here an incompressible, and deformable solid of initial length x1 and cross-

section A1. For example, this solid can be elongated to a final length x2 under the action

of a force F as illustrated in Figure 2.4 (a). The resulting strain (ε), which is a dimensionless

quantity that refers to the relative deformation/elongation due to the applied force, is expressed

as:

ε =
(x2 − x1)

x1
(2.4)

The stress σ is the resistance of an object to an applied force that could tear it apart.

When a force is applied to an incompressible solid, the cross-sectional area A1 will change to

compensate the change in length. The stress corresponds to the force by unit of area and has the

dimension of a pressure (expressed in Pa). In our example, the corresponding stress is defined

as:

σ =
F

A1
. (2.5)
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The Young’s modulus E describes how easily can a material be stretched or deformed and

is defined as the ratio of the stress and the strain:

E =
σ

ε
. (2.6)

So far, we have just considered the case of an elongated object, for which the force acts perpen-

dicularly to the cross-section. However the force F can also be applied parallel to the surface

as represented in Figure 2.4 (b), which is called shearing. In this case, the solid of thick-

ness d deforms sideways with a horizontal displacement ∆x. The resulting shear strain γ is a

dimensionless quantity expressed as:

γ =
∆x

d
. (2.7)

The shear stress τ corresponds to the applied shear force F by unit of area. Contrary to the

previous case of stretching, the cross-section to consider here is the one parallel to this force,

called A2. The shear stress is then given by:

τ =
F

A2
(2.8)

To quantify the elastic stiffness of a material, the shear modulus G is commonly used, in

rheometers for example, and is defined as:

G =
τ

γ
(2.9)

The shear modulus has then the dimension of a pressure and is expressed in Pa. The larger

the value of the shear modulus, the stiffer the material.

Stress-strain relationship

10μm

Figure 2.5: Exemplary stress σ-strain ε curve of a material. The slope of the curve corresponds
to the elastic modulus E of the solid. Source: www.linearmotiontips.com

The stress-strain relationship of a material provides information on its elastic behaviour. Figure

2.5 shows a typical stress-strain diagram of a solid material. For a low stress applied to the
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material, there is a linear relationship between stress and strain up to point A, known as

proportional limit. Such linear relationship is described by Hooke’s law, and the slope of the

curve correspond to the Young’s (or elastic) modulus of the material, defined as E = σ/ε. Until

this limit, the deformed material can still recover its original shape once the force is released.

From point C, known as a yield point, the strain increases more significantly than the stress,

and the deformed material can no longer go back to its original shape even after the release of

the force. The largest stress (or tensile strength) is reached at point D, beyond which a further

stretching of the material will tear it apart (fracture).

Viscoelastic models

Although some materials can be analysed only in terms of pure elasticity, most of the mate-

rials such as biological tissues or cells are rather viscoelastic [26]. A viscoelastic material, as

self-explanatory, combines the characteristics of both an elastic solid and a viscous liquid. We

will briefly introduce some theoretical elements used to describe a viscoelastic material in this

section.

(a) (b)

Figure 2.6: Sketch of (a) a spring that represents a perfectly elastic solid and (b) a dashpot that
describes a purely viscous liquid. These two elements displace by a relative distance ε under an
applied stress σ.

The elastic component of a viscoelastic material is usually represented as a simple spring,

as illustrated in Figure 2.6 (a). As we described in the previous section, the deformation of a

purely elastic solid follows Hooke’s law which in this case is given by:

σ = G · ε, (2.10)

where σ is the the applied stress, ε is the strain and G is the spring constant, which corresponds

to the elastic modulus of the spring.

In contrast, the purely viscous component of a viscoleastic material is represented by a

dashpot filled with liquid, as shown in Figure 2.6 (b). Such dashpot follows Newton’s law of

viscosity:

σ = η · ε̇, (2.11)

where η is the viscosity of the liquid and ε̇ is the strain rate.

By combining these two basic elements, a spring and a dashpot, several models are thus

available to describe the behaviour of a viscoelastic material. The two well-established models
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are Kelvin-Voigt and Maxwell models.

(a)

(b)

Figure 2.7: The two most commonly used models to represent a viscoelastic solid: (a) the
Kelvin-Voigt model and (b) the Maxwell model. These models are obtained when a spring and
a dashpot are connected in parallel and in series, respectively.

The Kelvin-Voigt model is obtained by connecting a spring and a dashpot in parallel, as

illustrated in Figure 2.7 (a). The corresponding strain and stress are given by:

ε = ε1 = ε2 (2.12)

σ = σ1 + σ2 (2.13)

= G · ε+ η · ε̇

When a constant stress (σ̇ = 0) is applied suddenly on a Hookean solid, the solid reaches

its maximum deformation immediately. In contrast, a viscoelastic material exhibits a creep

behaviour, for which the solid gradually reaches its maximum deformation over a certain period

of time. In the Kelvin-Voigt model, the deformation reaches equilibrium exponentially with a

characteristic time τ = η/G.

On the other hand, the Maxwell model is obtained when a spring and a dashpot are con-

nected in series, as shown in Figure 2.7 (b). The total strain is additive, and the stress over the

elements is the same:

ε = ε1 + ε2 (2.14)

σ = σ1 = σ2 (2.15)

= G · ε1 = η · ε̇2

In a Newtonian fluid such as water, the stress disappears immediately once the flow stops (i.e.

the strain ε is constant and thus ε̇ = 0). However, for a viscoelastic material, the stress gradu-

ally relaxes over a relaxation time τ even after the flow has stopped.

The Kelvin-Voigt model shows that the strain approaches a constant value at infinite time

limit while the Maxwell model describes a lienar relationship between the strain and the time.

Thus, the Kelvin-Voigt model describes the creep behaviour of a viscoelastic material better

than the Maxwell model does.
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In the Maxwell model, the stress relaxes exponentially and reaches an equilibrium at infinite

tie limit. However, this is not the case in the Kelvin-Voigt model, as the stress relaxes imme-

diately without any retardation. Therefore, the Maxwell model is more effective to depict the

stress relaxation behaviour of a viscoelastic material.

G0

G1
η1

Figure 2.8: Sketch of a Standard Linear Solid used to model viscoelastic materials. A Maxwell
model is connected in parallel with another spring of stiffness constant G0

A Standard Linear Solid (S.L.S.), as depicted in Figure 2.8, represents a more comprehensive

model that captures both creep and stress relaxation behaviours of viscoelastic materials. The

model consists of a Maxwell solid in parallel with a spring. The strain and stress relationships

for this model is thus given as:

ε = ε0 = εM (2.16)

σ = σ0 + σM (2.17)

σ = G0 · ε0 + σM

where εM and σM are the strain and stress of the Maxwell element respectively.

We see that any model containing a viscous component, described by a dashpot, involves an

exponential relaxation process for a creep or a stress relaxation. However this is not necessarily

the case for PDMS silicone networks, which are probably the most extensively used viscoelastic

materials in the study of soft wetting. These networks are formed via polymerisation of small

pre-polymers of different functional groups (by mixing a base polymer with a cross-linker). A

reticulated PDMS network does not have any liquid phase trapped inside, and thus it does not

necessarily obey an exponential relaxation function [27], as described previously for the different

models. It rather follows a power-law response function expressed as:

µ(t) = µ
[
1 + Γ(1− n)−1

(τ
t

)n]
, (2.18)

where µ is a shear modulus, Γ is a gamma function, and 1/2 ≤ n ≤ 2/3 (depending on the base

polymer to cross-linker ratio) [27].

A proper rheological characterization of soft viscoelastic PDMS solids can therefore be ob-

tained with such models, which remains crucial to understand the complex dynamic of soft

wetting.
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2.2.2 Static wetting on soft surfaces

Elasto-capillary length

We have already discussed the effect of surface tension on the shape and the wetting of a liquid

droplet resting on a rigid surface in Section 2.1.1. We will now focus on what happens when

the surface is soft.

(a)

(b)

Figure 2.9: (a) Rayleigh-Plateau instability of cylinders of agar gels immersed in toluene. Re-
published with permission from [28]. (b) Rayleigh-Plateau instability typically observed for a
water column flowing out of a faucet. Source: https://fyfluiddynamics.com

Let us consider here a soft viscoelastic solid in contact with a liquid. Is surface tension still

a relevant parameter in the case of such deformable surface? Or should we only consider the

mechanical properties of the soft surface?

Recent literature showed that the solid surface tension (between the liquid and the solid surface)

indeed affects the shape of soft viscoelastic cylinders of agar gels immersed in toluene [28]. A

tendency of the liquid to minimise its surface area with its surface tension as a driving force

breaks the stream of water into smaller droplets. Such unstable nature of a liquid jet is known as

the Rayleigh-Plateau instability. In Figure 2.9 (a), we can see that these viscoelastic cylinders

exhibit a Rayleigh-Plateau instability, very similar to what one could observe for a stream of

water flowing from a faucet (see Figure 2.9 (b)). The instability in the viscoelastic cylinders

rises when the Laplace pressure overcomes the elastic forces of the gel. Such competition be-

tween these two forces, capillary and elastic, can be expressed by a ratio of surface energy to

elasticity, which is expressed as “γ/µρ0” in Figure 2.9 (a). Here γ is the gel/toluene surface

tension, µ is the shear modulus of the gel and ρ0 is the radius of the cylinder. The larger the

ratio, the more viscous the material is, and the smaller the ratio, the more elastic the mate-

rial is. As can be observed in Figure 2.9 (a), more viscous gels deform more than the elastic ones.

Bearing in mind that there exists a competition between capillarity and elasticity for a soft

material, let us now revisit the equilibrium wetting configuration from Figure 2.1.
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Figure 2.10: Schematic drawing of a liquid droplet on a surface. Three interfacial tensions act
on the solid-liquid contact region. The red arrow indicates the vertical force component of the
liquid surface tension γLA.

Previously, we only considered the force balance in the direction parallel to the surface (see

Equation 2.1). Yet, the liquid-air interfacial tension also contains a vertical force component

γLA sin θY represented by the red arrow in Figure 2.10. There exists a balance of capillary and

elastic forces of the surface. This balance is represented by the elasto-capillary length (ℓ):

ℓ =
γLA sin θY

G
, (2.19)

where G is a solid shear modulus of the solid surface and θY the Young’s angle.

Surfaces such as glass have a typical shear modulus of a few hundred GPa, and thus the

elastocapillary length is in the order of pm and nm. For these surfaces, the elasto-capillary

length is significantly smaller than their thickness (typically of mm to cm), and thus we will

not observe any surface deformation. They are categorised as the “rigid surfaces”. In contrast,

solids such as polymer gels have a shear modulus of few Pa to few kPa in magnitude, and thus

the corresponding elastocapillary length is in the µm to mm range. These surfaces are known

as the “soft surfaces”. Due to the relatively larger elasto-capillary length, a deformation of the

soft surface at the three phase contact line can be observed, and is commonly known as the

“wetting ridge”.

The wetting ridge

Lester, and many others in the 1960s and 1980s, discussed the existence of a vertical force

balance at the contact line of a drop deposited on a soft solid surface [7, 30, 9]. They assumed

that soft solids deform into a sharp wetting ridge due to the presence of a point force acting

at the tip of the ridge [7] as described in Figure 2.11 (a). With such assumption, Carré, et al.

obtained a theoretical profile of the wetting ridge [29] given by :

h(x) ≈ γLA sin θeq
2πG

ln

(
d

x

)
, x > ε, (2.20)

where h(x) is the vertical displacement of the wetting ridge, θeq is the liquid contact angle, G is

the shear modulus of the soft surface, x is the distance from the three phase contact line, and

d is the distance along the surface tension γ
LA

. The cut-off distance ε will be discussed in the

next paragraph.
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(a) (b)

Figure 2.11: (a) Schematic description of a wetting ridge with a point force (γ12 sin θ) acting
at the tip. Republished with permission from [7]. (b) Surface topology of soft elastomer
substrate (Elastic modulus= 0.63MPa) obtained by interferometric microscopy. Republished
with permission from [29]

To confirm this theoretical surface profile, they also investigated the topology of the wetting

ridge by using an interferometric microscopy (Figure 2.11(b)), and obtained a good agreement

between the experimental and theoretical profiles.

Let us now have a closer look at the Equation 2.20. The vertical displacement h(x) is clearly

depends logarithmically on the a horizontal distance x from the contact line. This implies that

the surface deformation h(x) should be infinite for x = 0, i.e. there is a singularity at the

contact line. Such singularity was resolved by Carré by assuming that x is larger than a cut-off

distance ε, a few nanometers away from the triple line. However, such cut-off distance away

from the contact line has left an ambiguity regarding the actual shape of the wetting ridge tip.

(a) (b)

Figure 2.12: (a) Surface profiles of a soft silicone gel substrate deformed by glycerol droplets
of different radii. From left to right: glycerol droplet radii of 26.8, 74.5, 176.7, and 225.5 µm.
Republished with permission from [10]. (b) X-ray image of the wetting ridge formed by a
water droplet on a silicone gel of Young’s modulus 3 kPa. Scale bar= 5 µm. Republished with
permission from [11]

More recently, there have been many efforts to resolve the tip of the ridge. As displayed in

Figure 2.12 (a), Style, et al. recorded the deformation of a soft surface by embedding fluorescent

beads on the surface and tracking their positions using a laser confocal microscopy [10]. Also,

Park, et al. successfully obtained a high-resolution image of the sharp asymmetric ridge tip with

X-ray microscopy, as shown in Figure 2.12 (b). Both images show a sharp tip of the wetting

ridge (with a finite amplitude) at the contact line, and they prove that the shape of the ridge
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tip is determined by the balance of three interfacial tensions not just in the horizontal direction,

but also in the vertical direction. Also, they give a direct experimental proof that this force

balance resembles the Neumann balance. This points to the possibility that the solid surface of

the gel has a surface tension similar to liquids.

The triangle of the three interfacial tensions was first introduced by Neumann in 1894 [31],

and is now being called as the Neumann’s triangle. This condition always satisfies when there

is a three-phase contact line with an equilibrium [7].

Figure 2.13: Schematic description of the Neumann balance of three surface tensions
(γLA, γSL, γSA) at the tip of wetting ridge

Figure 2.13 describes the Neumann balacne of the three surface tensions acting at the tip of

a wetting ridge. Using the angles imposed by these surface tensions, we can derive the following

force balance:

γLA cos θY = −γSL cos θSL + γSA cos θSA (2.21)

γLA sin θY = γSL sin θSL + γSA sin θSA. (2.22)

2.2.3 Dynamic wetting

Viscoelastic braking

The dynamic wetting behaviour of a liquid droplet moving on a rigid surface is determined by

dissipation of energy within the liquid droplet [32]. On the other hand, wetting on soft surfaces

is mainly dominated by energy dissipation within the soft substrate [33]. Carré, et al. observed

that a liquid droplet actually moves slower on a soft surface than on a rigid surface due to such

dissipation.

This behaviour can be illustrated in Figure 2.14 (a) which shows the velocity of a low

volatility liquid o-tricresyl phosphate (o-TCP) running down on PDMS substrates of different

Young’s modulus (called Υ in [33], but will be indicated as E in this thesis to avoid confusion).

The velocity of the liquid drop is higher when the Young’s modulus of the substrate is larger

[33]. By investigating the spreading of o-TCP on a soft elastomer surface (see Figure 2.14 (b)),

the same authors showed that the contact angle (θ(t)) decreases with the spreading speed U

[29]. They found that the contact angle can be described as power law of the liquid spreading

speed. By using an energy balance involving both viscous and viscoelastic dissipation, they
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(a) (b)

Figure 2.14: (a) Speed U of o-TCP drops of different volume V running down PDMS surfaces
of different Young’s modulus Υ. Square: V = 3 µL, triangle: V = 5 µL, diamond: V = 8 µL.
Republished with permission from [33] (b) Evolution of contact angle θ(t) of o-TCP spreading
on a silicone RTV 615 surface as a function of spreading speed U . Expressed in logarithmic
scale. Republished with permission from [29]

obtained an equation that explains the spreading of the liquid:

cos θ0 − cos θ(t) =
3ηlU

γθ(t)
+

γ

2πGε

(
U

U0

)n

, (2.23)

where U0 and n indicate the damping properties of the solid, with n being typically less than

1. η is the viscosity of the liquid, and l is a logarithmic factor [29].

The right hand side of Equation 2.23 contains two main terms: the first one represents

the viscous dissipation within the liquid, and the second term indicates viscoelastic dissipation.

At low contact line speeds U , the second term dominates the behaviour of the contact angle,

whereas the viscous dissipation is more dominant at high speeds. Comparing to their experi-

ments on the o-TCP droplet spreading on the PDMS surface, they concluded that dissipation

within the viscoelastic substrate governs the dynamics of liquid contact line at low velocity [29].

2.3 Wetting on real soft surfaces

From the previous section, we learnt that a sharp wetting ridge is formed by a drop on a soft

surface due to the vertical component of the liquid surface tension and that a force balance acts

at the tip of this ridge. However, the theories we discussed in the case of idealised soft surfaces

do not completely capture the wetting behaviours on real soft surfaces. In this section, we

will describe several studies on properties of a commonly used material, a polydimethylsiloxane

(PDMS) gel.

2.3.1 PDMS

Polydimethylsiloxane (PDMS) is an inorganic polymer as its backbone consists of silicon instead

of carbon atoms. It therefore also known as silicone elastomer. PDMS is widely used in domestic

products such as sealants, cosmetics and baking moulds [34]. It is chemically inert, isotropic and
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Figure 2.15: Viscosity η of different polymer melts as a function of their molecular weight NB.
The red arrow indicates an entanglement threshold. Republished with permission from [36]

homogeneous, optically transparent and can easily attach to surfaces like glass. Such properties

of PDMS makes it compatible with optical and fluorescent microscopy [35].

Dependence on Molecular weight

The flow behaviour of polymers of low molecular weight differs from those of high molecular

weight. The viscosity of lower molecular weight polymers does not depend on the shear rate,

and thus these polymers behave like a Newtonian fluid [37]. On the other hand, when the

polymers have a higher molecular weight, the viscosity decreases with the shear rate i.e. the

polymers exhibit a shear-thinning behaviour [37].

Figure 2.15 shows the viscosity of different types of polymer melts, including PDMS, as

a function of their molecular weight. The viscosity of these polymers at zero shear rate was

estimated to resolve the pure molecular weight dependence of the viscosity. As we can see, the

viscosity is proportional to the molecular weight for all types of polymers until a certain indi-

cated by the red arrow in the Figure 2.15. This red arrow indicates an entanglement threshold,

above which the polymer chains start to entangle. The viscosity then increases according to

power law above this threshold [36]. The entanglement of polymer chains refers to the state

when the polymer molecules in a melt are surrounded by other long molecules that restrict their

motion in response to a deformation. In high molecular weight polymers (above entanglement

molecular weight), the motion of the polymer chain is disturbed by large entanglements, leading

to a significant increase in zero shear viscosity.

PDMS networks are formed by mixing a base polymer and a cross-linker. Changing the

mixing ratio of these two ingredients, or changing their molecular weight, affects the mechanical

property of final PDMS network.
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Figure 2.16: Elastic modulus of different common materials. The larger the elastic modulus,
the stiffer the material. Republished with permission from [38]

Figure 2.16 shows the elastic modulus of different objects of everyday life. The elastic mod-

ulus quantifies the resistance of a material to an elastic deformation when a stress is applied as

explained in Section 2.2.1. So the higher the elastic modulus, the stiffer the material. Biological

tissues are very soft with an elastic modulus that can be as low as a few Pa. It is widely known

that we can formulate PDMS networks with various elastic moduli [34]. Such flexibility to tune

the stiffness of PDMS networks makes it a very attractive and versatile material to use as a

surface for the study of soft wetting.

2.3.2 Shuttleworth effect

As already discussed in the Section 2.2.2, a liquid droplet wetting on a soft surface can deform

the surface.

Any type of interface is characterised by a surface energy γ, which corresponds to an excess

free energy per unit of area expressed in J/m2 [39]. This gives rise to a surface tension Υ, which

is the excess force per unit length of the interface in N/m [40]. For a liquid, the surface energy

γ and the surface tension Υ are identical, i.e. γ = Υ [41]. In contrast, for an elastic solid, this

is not the case. A stretching of its surface can alter its local physical chemistry, leading to a

change in its solid surface tension [42], which is known as the Shuttleworth effect [43].

The change of the surface energy of the interface with an area A due to the strain ε parallel

to the surface is expressed as:

δ(γA) =

(
γ +A

dγ

dA

)
δA (2.24)

=

(
γ +

dγ

dε

)
δA, (2.25)

Both surface stress and surface energy are strain dependent. This leads to the so-called Shut-
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tleworth relation:

Υ = γ +
dγ

dε
. (2.26)

The Shuttleworth effect gave rise to a debate about the validity of Neumann’s law at the wetting

ridge of a soft surface [42]. This will be further discussed in Section 2.4.1.

2.3.3 Poroelasticity

A cross-linked polymer network is well-known to be an incompressible material that does not

change in volume when deformed. When this elastic polymer network is placed into a solvent,

it absorbs quite a large amount of solvent, owing to the entropy of mixing [44]. Such flow of

liquid in and out of the network leads to a change in volume (i.e. a compressibility). Swelling

or shrinking of the network occurs with the migration of fluid. The interplay between such

fluid exchange and the deformation of an elastic network is called poroelasticity, which was first

introduced by M. A. Biot in 1941 to explain soil consolidation [45].

Recently, it has been found that the flow of liquid within polymer networks affects wetting

on a poroelastic surface. Zhao, et al. observed a logarithmic growth of the ridge height as the

liquid moves towards the wetting ridge [46]. Xu, et al. measured the relaxation of a wetting ridge

during a de-wetting process via interferometric imaging to observe the contribution from both

viscoelastic and poroelastic dissipation. They found that viscoelasticity is more dominant at

shorter timescales or for smaller droplets, while poroelastic contribution dominates the dynamics

for larger droplets or longer timescales [47]. Hourlier-Fargette, et al. corroborated the existence

of a poroelastic contribution by quantifying the extraction of a solvent (free oligomers) from an

elastomer surface due to a moving liquid contact line and showing that such extracted solvent

decreases the droplet surface tension [48].

The extraction of solvents by a contact line will be further discussed in the next section.

2.3.4 Extraction of solvents by a contact line

Effect of uncross-linked polymer chains

Hourlier-Fargette, et al. studied the dynamics of a moving droplet of water/glycerol on both

untreated and toluene-treated PDMS surfaces, for which toluene removes the uncross-linked

polymer chains from the PDMS network. Figure 2.17 (a) shows the evolution of a droplet

sliding down a vertical PDMS surface. For this untreated surface, two distinct regimes (I and

II) of droplet velocity are observed. At first the droplet slides down at moderate velocity

(regime I) and then faster (regime II), and this for different droplet volumes. Several reasons

can be responsible for this sudden change in droplet speed, such as droplet shape bistability or

a modification of the droplet composition [48].

In comparison, when a droplet was deposited on a toluene-treated PDMS sample, only regime

I was observed for the droplet velocity (see figure 2.17 (b)). The re-swelling of a treated sample

with silicone oil led to recovery of the two droplet velocity regimes. Such result shows that

the presence of uncross-linked oligomer chains influences the two-regime behaviour of droplet

observed on untreated PDMS sample [48]. So how do these uncrossed-linked chains affect the

velocity of a droplet moving on a surface?
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(a)

(b)

Figure 2.17: (a) Vertical distance z travelled by a 40%/60% water/glycerol mixture droplet
of volume 21.5 µL deposited on an untreated PDMS surface. Two different regimes of droplet
velocities are observed. Inset: same experiment for droplets of different volume. (b) Vertical
distance z travelled by a 40%/60% water/glycerol mixture droplet of volume 21.5 µL deposited
on a toluene-treated PDMS surface. Only one speed regime of the droplet is identified. Inset:
the two speed regimes of the droplet are recovered after re-swelling the treated PDMS surface.
Republished with permission from [48]

To answer this question, the authors then measured the surface tension of collected water-

glycerol drops, after sliding down the two different PDMS surfaces as a function of the collected

volume. They found that the surface tension of droplets that have slid on an untreated surface

decreases dramatically with the collected droplet volume, from V ≈ 3mL, and then saturates

at higher volumes (see Figure 2.18 (b)). This sudden decrease of surface tension indicates the

presence of a silicone oil film starting to form at the liquid-air interface [48]. As a droplet slides

downs on the PDMS surface, it harvests the free oligomers that lower the surface tension of the

liquid drop. Therefore the bigger the droplet, the more harvested oligmers and thus the lower

the surface tension. For a high volume, the droplet surface is fully covered by a silicone oil film

and thus the surface tension saturates. This mechanism also explains that the surface tension

does not vary significantly with the volume for droplets sliding on a treated surface, as very few

free oligomers are still present.

They confirmed the possibility of such mechanism by considering different droplets of given

water-glycerol composition and by measuring their surface tension before and after deposition

on an untreated PDMS surface (see Figure 2.18 (d)). They observed that the surface tension of

a given droplet systematically decreases after sliding the surface. They argued that the silicone

oil gradually covers the droplet surface as it rolls down the untreated PDMS surface, leading to

this sudden decrease of surface tension.

We now can understand how the extraction of uncrossed-linked oligomers by a moving drop

can affect the surface tension of this drop. Of course, this also affects the wetting dynamics on

a soft surface and, for instance, allows to account for the change in velocity of a sliding drop

presented in Figure 2.17.
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Figure 2.18: (a) Sketch of a liquid drop sliding down a PDMS surface, inclined with an angle
α = 29.2◦. The droplet radius is r = 2mm. (b) Surface tension of water droplets collected after
their descent on an untreated PDMS surface (red circles), and on treated PDMS surface (green
circles). (c) Image of the surface of collected water droplets of volume 33 µL after sliding down
the untreated PDMS surface. (d) Initial and final surface tension γ of water/glycerol mixture
droplets of different composition before and after their descent on untreated PDMS surface.
Republished with permission from [48]

Phase separation in the wetting ridge

As we just saw, the presence of free oligomers at a PDMS surface can modify the surface tension

of a moving drop. However, these uncrossed-linked chains can also directly affect the wetting

ridge.

Cai, et al. observed a fluid separation at the contact line of a soft PDMS network swollen

with low molecular weight trimethylsilioxy-terminated silicone oil [49]. To visually differentiate

the swelling silicone oil from the PDMS network, they implemented two different dyes of non-

overlapping emission spectra. The silicone oil that served as a swelling fluid was dyed with a

red perylene monoimide (PMI) dye (λem ∼ 700 nm), and a green fluorophore (λem ∼ 520 nm

Figure 2.19: Schematic representation of a water droplet sitting on a swollen PDMS network.
Bottom right: reconstructed z-stack laser confocal microscope image of a wetting ridge (red:
extracted silicone oil, green: PDMS network, yellow: combination of green and red channels).
Scale bar: 20 µm. Modified with permission from [49].
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was bonded to the network to prevent the fluorophore to disperse into the fluid part [49]. They

observed that a separation of silicone oil (red cusp region) from a PDMS network, referred as a

“fluid separation”, occurs near the contact line as shown in Figure 2.19 [49].

The authors also studied the influence of swelling and the degree of cross-linking on the

static wetting ridge of a swollen PDMS network. They noticed more fluid separation for a

softer (i.e. less cross-linked network), and also for a more swollen network [49].

They concluded that the surface tension of the liqudi drop pulls the network upwards and

the fluid out, while the elastic energy of the network and the energy of mixing between the

network and the swelling fluid lead to a finite height of the separated fluid [49].

(a)

(b)

Figure 2.20: (a) Left: Experimental image of the dynamic wetting ridge different droplet ve-
locity. Scale bar: 20 µm. Middle: Profile of the dynamic wetting ridge for different droplet
velocity. from top to bottom v = 5, 10, 50, 100, 300, 800 µm/s. Right: Maximum height of ridges
of silicone oil hoil,max (red), and PDMS network hnet,max (yellow). (b) Left: Separation height
hsep vs droplet speed v for different swelling ratios. Q = 16 (Cherry red), Q = 14.5 (bordeaux),
Q = 12.7 (dark blue), Q = 10 (blue), and Q = 7.5 (torquoise). Inset, separation height for dif-
ferent Q at zero speed hsep,0. Right: competition of molecular (red solid arrows) and advective
(red dashed arrows) fluxes on driving mechanism of phase separation ridge. Republished with
permission from [50]

The same fluid separation also takes place in the case of a drop moving on a swollen PDMS

surface. Hauer, et al. studied the effect of droplet dynamics on the wetting ridges of a soft and

swollen PDMS surface [50].

They used soft PDMS networks with an elastic modulus of 3-5 kPa with different amounts

of swelling silicone oil [50]. The fluorescence labelling was done in the same way as that of Cai,

et al. (see previous page). The swollen PDMS network was mounted on a motorised stage, and
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a 8 µL water drop was placed on the PDMS surface. The drop was fixed with a metal ring and

the motorised stage moved at a constant speed [50]. The entire set up was installed on a laser

confocal microscope to allow visualisation of a moving wetting ridge. The height of the PDMS

network and the separated fluid were then measured with the corresponding droplet speed.

They found that the maximum height of silicone oil (hoil,max) decreases, while the maximum

PDMS network height (hnet,max) increases but not as significantly as the decrease of hoil,max

when the droplet speed increases (see Figure 2.20 (a)). The separation of the height of silicone

oil hsep (hsep = hoil,max − hnet,max) with an increase of the droplet speed was also measured

(Figure 2.20 (b)). Here, hsep refers to the amount of pure silicone oil liquid phase separated,

and it decreases with increasing droplet speed. They also compared the dynamic separation

height of various substrates with different swelling ratio Q. When Q > 10, phase separation at

the ridge was consistently observed [50]. hsep also increased with an increase of swelling ratio.

From these observations, Hauer et al. concluded that the competition of molecular flux

between the PDMS network and the silicone oil, and drop advection determines the amount of

liquid separation at the wetting ridge of a moving droplet [50].

2.4 Debate

Due to the behaviour of real soft surfaces, that are not expected in the ideal cases such as the

phase separation of uncross-linked silicone oil, several theories and their applicability to the

wetting of soft surfaces are still under a question by many literatures. In this section, we will

discuss the two main debates in the field of soft wetting: the Shuttleworth effect for polymer

gels and the validity of the Neumann’s law in moving wetting ridges. These debates will also

be addressed in Chapter 6.

2.4.1 Shuttleworth effect for polymer gels

As mentioned earlier in the Section 2.3.2, both the surface stress and the surface energy are

strain-dependent for solids, and are related through the Shuttleworth equation (see Equation

2.26). However, no consensus has been reached regarding the existence of the Shuttleworth

effect for the polymer gels [51].

Xu, et al. directly measured the surface stress as a function of the strain in a polymer

gel [52]. A glycerol droplet was deposited on a soft silicone substrate (E = 3.0 kPa) in which

small fluorescent nanobeads were attached. A uniform baiaxial strain ε∞ was applied on the

substrate with a biaxial stretcher ans the corresponding wetting profile was imaged with confocal

microscopy.

As shown in the insert of Figure 2.21 (a), they observed a significant change in the geometry

of the microscopic contact line. With an increase in the surface strain from 0 to 18%, the height

of the wetting ridge decreased by a factor of three, and the ridge opening angle increased from

90.8◦ to 126.3◦ [52]. The strain at the contact line is a combination of the applied strain ε∞, and

the localised deformation that forms the wetting ridge. Thus, they calculated the local strain

ε near the contact line by using the in-plane and out-of-plane displacements of the substrate
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(a) (b)

Figure 2.21: (a) Left: Average surface stress as a function of the local strain for PDMS substrates
deformed by a single glycerol droplet. Insert: Wetting profiles of a single glycerol droplet on
unstretched (red), 9% stretched (blue), and 18% stretched (pink) PDMS substrates. Scale bar:
20 µm. Republished with permission from [52]. (b) Contact angle measurements of a glycerol
droplet on strained and unstrained substrates. a: Glycerol droplet on unstrained (left) and 6%
strained (right) polycarbonate glass. The red solid line indicates a typical fit of the circular
cap. b: Glycerol droplet on unstrained (left) and 100% strained (right) Elastollan elastomer.
Scale bar: 50 µm. The black dotted line in all the images indicates the height of each spherical
cap. Republished with permission from [51]

by tracking the displacements of fluorescent beads in confocal microscopy. They noticed that

the local strain increases and converges towards the ε∞ as the applied stress increases (see left

image of Figure 2.21 (a)) [52]. By using the Neumann force balance and the measured opening

angle of the wetting ridge, the authors calculated the strain dependence the surface stress as

displayed in the right image of Figure 2.21 (a). They observed a linear increase of the surface

stress Υ with an increase in the measured strain ε [52].

From their experimental evidence, Xu, et al. concluded that the surface stress is indeed

dependent on the surface strain of soft silicone elastomers, corroborating the validity of the

Shuttleworth relation for the polymer gels.

On the other hand, Schulman, et al. compared the contact angles of glycerol droplets on

strained and unstrained glassy and elastomer surfaces, and claimed to have found a strain-

dependent surface stress of a glassy solid, but no strain-dependence of the surface stress of an

elastomer surface [51].

A glycerol droplet was deposited on a polycarbonate glass, and on an elastomer surface. A

strain ε was applied to each substrate by using a motorised translation stage, and the contact

angle of the droplet was measured by optical microscopy [51]. The contact angle of the glycerol

droplet sitting on a glassy surface decreased from 71◦ to 62◦ with a 6% increase of the strain

ε, as shown in Figure 2.21 (b) panel a. In contrast, the contact angle of the droplet did not

change even with a 100% increase of surface strain of an elastomer [51].

Then they quantified the strain-dependence of the difference between the solid-solid and

solid-vapour surface energies of strained glassy and elastomeric materials from the measured
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contact angle. The Young’s law (see Equation 2.1) was used to find the difference in surface

energies (γSV − γSL) [51]. They found that the interfaces of polymeric glassy materials exhibit

strain-dependent surface energies, but the surface energies of the interface involving elastomeric

substrate have no strain-dependence [51]. Therefore, they concluded that glassy materials

exhibit the Shuttleworth effect, but incompressible elastomers do not.

2.4.2 Validity of Neumann’s law

The question of the existence of the Shuttleworth effect on polymer gels also gives rise to a

question of the validity of the Neumann balance in a dynamic wetting ridge on a soft surface.

(a) (b)

Figure 2.22: (a) Schematics of the moving contact line region. Republished with permission
from [53]. (b) Schematic representation of stationary (left) and dynamic (right) wetting ridge.
h0 is the substrate height, θS is the opening angle of solid wetting ridge. When the liquid contact
line moves with velocity v, the wetting ridge rotates by φ. Republished with permission from
[54]

Dervaux, et al. claimed that not only capillarity but also viscoelasticity of the soft substrate

affect the wetting ridge dynamics [53]. Hence, they argued that the Neumann construction,

which is solely based on capillarity, does not fully explain the motion of the triple contact

line [53]. They instead suggested a non-linear force balance in which both non-linear localised

capillary and viscoelastic forces oppose the motion of contact line:

f⃗S = γ⃗LV + γ⃗SV + γ⃗SL + f⃗ext, (2.27)

where f⃗ext indicates external forces other than surface tensions and viscoelastic stresses [53]. A

schematic drawing of this non-linear force balance is shown in Figure 2.22 (a).

On the other hand, van Gorcum, et al. claimed that the contact line motion is still governed

by Neumann’s law. Figure 2.23 (a) shows the dynamic liquid contact angle of a water droplet

moving on a soft PDMS surface (θ − θeq, open circles), and solid ridge rotation of the surface

(φ, closed diamonds) as a function of the contact line speed v. At low speed, both the change

of liquid contact angle and solid ridge rotation angle exhibit a power law dependence with an

exponent n being an exponent extracted from a fitting of power law relation to the rheological
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(a) (b)

Figure 2.23: (a) Evolution of the dynamic liquid angle θ − θeq and the solid ridge rotation φ
with the contact line speed v. The blue dashed line shows a power law form with rheological
exponent n, and the red solid line shows a prediction from the analytical solution. (b) Opening
angle of the wetting ridge as a function of the contact line speed. The angles are described in
Figure 2.22 (b). The red solid line and the gray dashed lines are best fits of power law of vn/2

and vn respectively. Republished with permission from [54]

measurement of the substrate [54]. Also, both of these angles are in a good agreement with

each other. Such finding provides a direct experimental evidence that Neumann’s law is still

valid at low velocity, and rejects the hypothesis on the existence of a viscoelastic contribution

on the wetting ridge dynamics [54]. They also demonstrated theoretically that Neumann’s law

is relevant as long as n < 1. As discussed in Section 2.1.2, when the contact line is moving on

a rigid solid surface, the viscous stress is non-integrable, leading to a singularity at the contact

line region [24]. On the other hand, for soft solids, the stress displays a much weaker divergence

and can still be integrated [55]. Van Gorcum, et al. suggested the stress (σ) form:

σ ∼ µ
(v
l
τ
)n

, (2.28)

where l is a distance from the contact line, µ and τ are respectively the complex modulus

and the time scale extracted from rheological measurement of the soft solid [54]. The integrated

stress vanishes when n < 1, and thus this shows that Neumann’s relation is still valid.

Figure 2.23 (b) shows the evolution of the ridge opening angle θs as a function of the speed

v. At larger contact line speed, θs increases with speed. Owing to the validity of Neumann

construction, this shows that the solid surface tension is a dynamical quantity [54]. Van Gor-

cum et al. also observed a similarity between their velocity-dependent increase of θs and surface

strain-dependent increase of the static solid angle of literatures [51, 52], further corroborating

the existence of the Shuttleworth effect on dynamical wetting ridge.

Dervaux, et al. also compared their theory to the experimentally measured solid angle θs,

and dynamic liquid contact angle θ − θeq from van Gorcum, et al. [54], as shown in Figure

2.24. The description of these angles are illustrated in Figure 2.22 (b). They found a better

agreement between the experimentally measured angles with the suggested non-linear theory
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Figure 2.24: Comparison of experimental data from [54] (green diamonds) with non-linear
theory from [53] (blue solid line) and Neumann construction (orange solid line). Left: solid
angle θS as a function of velocity. Right: dynamic liquid angle as a function of ridge rotation.
Republished with permission from [53]

than with Neumann triangle.

Such comparison of their theory with the experimental data of van Gorcum, et al. led

to a conclusion that a model solely based on capillarity such as the Neumann force balance

cannot fully describe the behaviour of dynamic wetting ridges on a soft surface, and viscoelastic

contribution of the bulk solid has to be considered [53].



Chapter 3

Materials and experimental methods

3.1 Materials

3.1.1 PDMS preparation

Polydimethylsiloxane (PDMS) networks are usually prepared by mixing a base polymer and a

cross-linker. We prepare PDMS networks by using different kinds of silicone elastomers from

Gelest, Inc., and Dow Corning and varying the base/cross-linker mixing ratio.

The networks from Gelest, Inc. are formulated based on the recipe from Jensen, et al. [56],

which involves two premixes: part A, and B. Part A is a mixture of a base polymer and a

catalyst. Part B is obtained by diluting a cross-linker into the same base, which are unreactive

without the presence of catalyst. This part allows to prevent local cross-linking that could

happen if drops of cross-linker were directly added into the base premix A. Such local cross-

linking can be visualised as lumps in a mixture and can form inhomogeneous structures and

disturb the curing of bulk elastomer [34]. Once prepared, parts A and B are mixed together.

PDMS samples from Dow Corning are usually prepared by mixing CY52-276 components

A and B that are already provided by the manufacturer. The two components are mixed with

a mass ratio of 1.3:1.

3.1.2 Swelling and extraction

Toluene and dichloromethane (DCM) are used as the solvents to extract free uncross-linked

molecules inside the PDMS complex.

Solvent Solubility parameter (δ) [cal1/2cm−3/2] Dipole moment (µ) [D]

PDMS 7.3 0.6-0.9

Toluene 8.9 0.4

DCM 9.9 1.6

Table 3.1: Solubility parameter δ, and dipole moment µ of solvents

Table 3.1 shows the solubility parameter δ, and dipole moment D of each solvent. The

solubility parameter and the dipole moment are important quantities to predict the degree of

swelling and solubility of a polymer in a solvent [57]. δ estimates the degree of interaction

29
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between materials numerically, and is thus a good indicator of solubility of the material [58].

There are two different ways to derive the solubility parameter δ.

Hildebrand first introduced the numerical indication of the solvency behaviour of a liquid

in 1936, known as the solubility parameter δ, when δ is derived from cohesive energy density c

[58]. The equation is as followed:

c =
∆H −RT

Vm
(3.1)

δ =
√
c (3.2)

where ∆H is the heat of vapourisation of liquid, R is the ideal gas constant, T is the tem-

perature, and Vm the molar volume of liquid [58]. Heat of vapourisation ∆H is correlated to

solubility δ due to the van der Waals interaction between the molecules [58]. The van der Waals

intermolecular interaction that has to be overcome when vapourising a liquid is assumed to be

the same as that needs to be overcome when dissolving the liquid [58].

The advantage of Hildebrand solubility parameter is that finding the parameter of solvent

mixtures is easy to calculate (via volume fraction of each solvent). However, deviation of the

expected degree of swelling of a material with solvents according to the Hildebrand parameter

from the actual experimental measurements was observed [59].

Hansen in 1967 then suggested a parameter that includes the contribution of dispersion,

polar, and hydrogen bonding forces on the basis of Hildebrand solubility parameter [60]. The

Hansen parameter is expressed as:

δ2 = δ2D + δ2P + δ2H , (3.3)

where δD is the dispersion force, δP the polar force, and δH the hydrogen bonding force [61].

Dipole moment occurs due to the unequal distribution of electrons between two atoms when

there is a difference in electronegativity of atoms [62]. As the dipole moment of a bond is a

vector quantity, the overall polarity µ of the molecule is a vectorial sum of these dipole moments

[62].

The closer the δ and µ of the solvent to those of PDMS, the network is more miscible and

will swell more in the solvent.

(a)

C ClCl

H

H
(b)

Figure 3.1: Chemical structures of (a) toluene, and (b) DCM

Dichloromethane (DCM) has higher dipole moment than toluene due to the two chlorine

atoms present as illustrated in Figure 3.1 (b). Lee et al, suggested four categories in solubility

of PDMS in solvents. DCM belongs to a category of “moderate solvent” (9.1 < δ < 11.3,
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0.46 < D < 2.78), and tolune is a “good solvent” (7.3 < D < 9.5) in PDMS [57].

A swelling of PDMS network in a solvent can be explained thermodynamically on the basis

of Flory-Huggins lattice theory.

Flory and Huggins first investigated the thermodynamics of binary polymer solutions by

assuming that the molecules of a pure solvent and a polymer are distributed over N0 lattice

sites in a rigid lattice frame [63]. The total number of lattice sites N0 can be expressed as:

N0 = N1 + r ·N2, (3.4)

whereN1 is the number of solvent molecules, and N2 is the number of polymer molecules consist-

ing r repeated units. By using the standard theory of mixing and Stirling’s approximation,they

suggested an expression for the entropy of mixing, which is given as:

∆Smix = −k(N1 · lnϕ1 +N2 · lnϕ2) (3.5)

where ϕ1 and ϕ2 are the volume fractions of the solvent and polymer respectively. The Gibbs

free energy of mixing ∆Gmix is expressed as:

∆Gmix = ∆Umix − T∆Smix (3.6)

where ∆Umix is the enthalpy of mixing, which can be positive (endothermic) or negative

(exothermic). The Flory Huggins interaction parameter χ, a parameter that is used to de-

scribe the polymer-solvent interaction, is given by:

χ = ∆Umix/(kTN1ϕ2) (3.7)

Substituting Equation 3.5, and 3.7 into the Equation 3.6 gives:

∆Gmix ≈ ∆Fmix = kT (χN1ϕ2 +N1 lnϕ1 +N2 lnϕ2) (3.8)

= RT (χn1ϕ2 + n1 lnϕ1 + n2 lnϕ2), (3.9)

where N1 = n1NA,N2 = n2NA, and R = kNA, in which NA is an avogadro constant. When the

two components are mixed, the free enthalpy of mixing is determined by chemical potential µ

of both components, defined as:

∆µi = ∂∆Gmix/∂ni. (3.10)

On the basis of Flory-Huggins theory of mixing, Flory and Rehner developed a model that

describes the isotropic swelling of rubber cross-linked in a dry state [64]. The polymer network

can absorb a large amount of liquid when immersed in a“good solvent”, and starts to swell.

This swelling is opposed by elastic forces within the network due to the tendency of the network

to recoil to its orginal shape [65]. The overall change of free energy upon the swelling of polymer

gel thus is given as:

∆F = ∆Fmix −∆Fel. (3.11)
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The maximum swelling occurs when the elastic and the polymer-liquid forces are in equilibrium

[65]. Thus, ∆F = 0, ∆Fmix = ∆Fel. Flory-Rehner equation also considers the effect of cross-

linking degree on the elastic forces contribution [66]. The equation is represented as:

−[ln(1− ϕ2) + ϕ2 + χ1ϕ
2
2] = V1n(ϕ

1/3
2 − ϕ2

2
), (3.12)

when V1 is the molar volume of the solvent, n is the number of network chain segments bounded

on both ends by cross-links, and χ is the Flory-Huggins solvent-polymer interaction parameter

[67]. Equation 3.12 can be expressed differently:

−[ln(1− ϕ2) + ϕ2 + χ1ϕ
2
2] =

V1

νMc

(
1− 2Mc

M

)(
ϕ
1/3
2 − ϕ2

2

)
, (3.13)

where ν is the specific volume of the polymer, M refers to the molecular mass of the initial

polymer, Mc the average molecular mass between cross-links [68].

3.1.3 Flat substrate preparation

Fluorescent particles

PDMS 

Cover slip 

(a) (b)

Figure 3.2: (a) 3D representation of a prepared flat substrate. Fluorescent particles are partially
engrained into the cured PDMS gel. (b) Bright field microscope image of a prepared flat
substrate. White dots indicate coated fluorescent particles

A prepared uncured PDMS mixture of Dow Corning CY52-276 A and B with a mass ratio 1.3:1

is coated on a glass cover slip (dimension: 24mm x 24mm) with a spin coater with rotational

frequency of 2000 rpm for 100 s. The coated PDMS layer has a thickness of around 100 µm. The

coated substrate is cured in an 75oC oven for two days. The cured substrate is then dip coated

with a solution of fluorescent particles for a minute. The fluorescent particles are water-soluble

FluoSpheres™ Carboxylate-Modified Microspheres with diameter of 100 nm from Invitrogen™,
and the particle solution is prepared by dissolving 150 µL fluorescent particles in 30mL 0.5M

sodium chloride (NaCl) solution. The FluoSpheres are partially engrained into the PDMS gel

after the coating process as illustrated in Figure 3.2 (a). Indeed the fluorescent particles sink as

their radius (50 nm) is much less than the elastocapillary lengthscale defined as γSA/E, in which

γSA is the surface tension (or surface stress) of the PDMS gel, and E is the elastic modulus of

the gel [69].
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Figure 3.2 (b) shows a bright field microscope image of a prepared flat PDMS substrate.

We can observe that the fluorescent particles (white dots) are homogenously coated onto the

substrate.

3.1.4 Cavity preparation

Figure 3.3: Cavity substrate preparation process. A 1 cm × 1 cm × 4 cm cuvette is filled with
uncured PDMS mixture, and spun for 48 to 72 hours with a constant rotational speed. An
empty parabolic cavity is eventually created in the middle of cuvette

We use the method from van Gorcum et al. [54] to prepare a PDMS parabolic cavity inside a

cuvette. Prepared uncured PDMS mixture of part A and B is degassed with a vacuum pump

and is poured into a 4 µL cuvette, leaving a small volume of air at the top. The cuvette is then

covered with a lid, and spun for 2 to 3 days in room temperature until the network is completely

cured. The spinning speed depends on the viscosity of elastomer mixture, ranging from 60 to

80 rpm. If the mixture is more viscous, a faster rotational speed is required. The centrifugal

force extends the small air volume into a parabolic cavity as illustrated in Figure 3.3 [54].

3.2 Experimental methods

3.2.1 Rheometry

A rheometer is an important tool to measure mechanical properties of the prepared PDMS

samples under an applied force. We use an oscillatory rheology for the measurement. The

oscillatory measurement for scientific purposes was first introduced by Eisenschitz, et al. in

1933 to determine mechanical material constants of colloids [70].

Figure 3.4: A simple illustration of a shear rheology. A sample is sandwiched between the top
and bottom plates, and a shear force F is applied parallel to the plates
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Figure 3.5: Geometric relation of complex modulus G∗ with storage modulus G′, and loss
modulus G′′. The phase shift δ is indicated as the angle between G∗ and G′. The G′ axis is a
real axis while the G′′ axis is an imaginary axis

In order to explain the oscillatory test of a rheometer, we use the two-plates model as

illustrated in Figure 3.4. A sample is “sandwiched” between the top and bottom plates, and

the upper plate attached to a rod that is connected to a rotor at the other end moves back and

forth in a parallel direction to the lower plate with a shear force F . The bottom plate remains

stationary in the meantime. Such motion of the upper plate gives rise to shearing of the sample

with a deflection path s and a deflection angle φ.

A rotational rheometer can either apply a torque and measure the rotational speed, or apply

a rotational speed and measure the torque required to maintain that speed. There are two

modes of oscillatory rheological measurements, known as controlled shear deformation (CSD),

and controlled shear stress (CSS) modes.

For the CSD test mode, the angular displacement φ is preset, and the torque M required

to give that displacement is measured from which the shear stress τ is calculated. On the other

hand, in the CSS mode, the oscillating torque M is applied from the rotor to the upper plate,

and the resulting angular displacement φ is measured, from which the shear strain γ can be

calculated.

The ratio of the applied (or measured) shear stress to the measured (or applied) shear strain

gives the shear modulus G∗. As the shear modulus is in a complex form, it consists of a real

part G′, a storage modulus, and an imaginary part G′′, a loss modulus. The relationship is as

follows:

G∗ = G′ + iG′′ (3.14)

Both stress and strain are time-dependent and thus are expressed in sinusoidal form. For a

perfectly elastic solid, as the stress is proportional to the strain according to the Hooke’s law,

the maximum stress occurs at the maximum strain. The strain and the stress are then said to

be “in-phase”. For a pure viscous liquid, the Newton’s law applies, and the maximum stress

occurs at the maximum strain rate, and therefore the stress and the strain are “out-of-phase” by

π/2rad. As a viscoelastic solid posseses characteristics of both purely elastic solid and perfectly

viscous liquid, the phase difference between the stress and the strain is between 0 and π/2.

This phase shift (δ) determines the contribution from the viscous and elastic proportions to the

characteristics of the viscoelastic material G∗.

As the rheometer is temperature controlled by a thermostat, high temperature curing of a
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Figure 3.6: Curing protocol of a PDMS sample with the rheometer. The black solid line
represents the set temperature, the blue triangles are the measured loss moduli G′′ of the
curing sample, and the red squares represent the measured storage moduli G′ of the sample
while curing.

PDMS sample can be done within the instrument. Figure 3.6 shows an exemplary rheometer

curing protocol for a prepared PDMS sample. The maximum temperature of the curing proto-

col was set as 80◦C as the oven used for the PDMS curing is set at 75◦C. The storage modulus

G′, and the loss modulus G′′ of the sample can be measured during the curing process, and

we can observe their evolution as a function of temperature. Both storage and loss moduli of

the PDMS mixture increase with an increase in temperature in the beginning. A cross-over of

the two moduli occurs at high temperature, indicating that the elastic portion of the complex

modulus is more dominant than the viscous portion, i.e. the sample is being cured successfully.

The viscoelastic materials show time dependence and thus G’and G” are not constants.

Also, as mentioned in Section 2.2.1, PDMS gels have various time scales and we can obtain a

spectrum of these time scales. Thus, the complex modulus of PDMS gels adopts a power law

form:

G∗ = G0 (1 + (iωτ)n) , (3.15)

when G0 is a low frequency storage modulus, ω is an angular frequency, τ a time scale, and n

is an exponent.

The time dependence of each modulus can be evaluated by changing the frequency of the

applied stress or strain. Such rheological measurement is called a frequency sweep. High fre-

quency corresponds to the short time scale, and the low frequency represents the long time scale.

During the preparation of either flat or parabolic cavity substrate, a rheological measurement

of the formulated elastomer mixture with Anton Paar MCR 502 rotational rhoemeter is always

conducted.
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Figure 3.7: (a) Anton Paar MCR 502 rotational rheometer in the lab (b) An examplary rheo-
logical plot of PDMS gel. Blue points: measured storage modulus (G′ of the gel as a function
of rotational frequency ω, indicates elastic portion. Dark yellow points: measured loss modulus
(G′′) of the gel as a function of rotational frequency ω. The solid lines represent the fitting of
data points with a power law equation.

Figure 3.7 (b) is an exemplary rheology plot of a PDMS gel. At higher frequency, loss

modulus is more dominant, and as ω decreases, the loss modulus decreases linearly while the

storage modulus starts to plateau. Solid lines indicate the fitting of data points with the above-

mentioned power law equation. From the fitting, we get: G0 ≈ 339 Pa, n ≈ 2.13, τ ≈ 0.129,

and n ≈ 0.628.

3.2.2 Surface tension measurement

A pendant drop tensiometer captures an image of a drop and uses the shape of the drop

to calculate its surface tension. A pendant drop, that is suspended from a needle into an

atmospheric phase or ambient liquid, is most commonly used to measure the surface tension.

Surface tension tends to deform a drop into spherical shape, while gravity pulls down the drop

from its spherical shape, leading to formation of pear-like shape of the drop.

The hydrostatic pressure is the pressure exerted by the fluid at an equilibrium at a certain

point within the fluid, mainly due to the gravitational effect. The prssure p at the vertical

height z within the pendant drop is described as:

p = ρgh, (3.16)

where ρ is the fluid density, and g is the gravitational acceleration.

The difference in the hydrostatic pressure ∆p−∆p0 between the two points within the drop

with distance z is thus described as:

∆p−∆p0 = ±∆gz. (3.17)

The surface tension pulling the surface of the pendant drop increases the pressure inside
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(a) (b)

Figure 3.8: (a) Schematic representation of a pendant drop. R1 and R2 are radii of curvature
of the drop, and s is the arc length of the drop. Adapted from Dataphysics-instruments.com.
(b) Pendant drop of Dow-Corning CY52-276 A PDMS elastomer in air. The red line overlayed
on the image shows an example of drop profile fitting by DataPhysics OCA tensiometer

the drop. According to Figure 3.8 (a), the Laplace pressure is the pressure difference between

inside and outside of the drop, and is expressed as:

∆p = γ

(
1

R1
+

1

R2

)
, (3.18)

where R1, and R2 are the radii of curvature. R1 = R2 = R0 at the lowest position of the

drop, and thus by using the Equation 3.18, pressure at reference plane ∆p0 can be expressed

as:

∆p0 =
2γ

R0
. (3.19)

Combining Equations 3.17, 3.18, and 3.19 gives:

∆p =
2γ

R0
±∆ρgz (3.20)

γ

(
1

R1
+

1

R2

)
=

2γ

R0
± ∆ρgz

γ
(3.21)(

1

R1
+

1

R2

)
=

2

R0
± ∆ρgz

γ
(3.22)

Figure 3.8 (a) shows that sinϕ = x
R2

, i.e. 1
R2

= sinϕ
x . Thus, Equation 3.22 becomes:(

1

R1
+

sinϕ

x

)
=

2

R0
± ∆ρgz

γ
(3.23)
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Parametrisation with arc length s gives:

dϕ

ds
= −sinϕ

x
+

2

R0
± ∆ρgz

γ
(3.24)

dx

ds
= cosϕ (3.25)

dz

ds
= sinϕ (3.26)

with boundary conditions 0 = x(s = 0) = z(s = 0) = ϕ(s = 0). Figure 3.8 (b) shows a Dow

Corning CY52-276 A pendant drop in air. The numerical fit of the shape of the drop (red solid

line in the figure) gives the value of PDMS/air surface tension.

3.2.3 Confocal microscopy

PMT

Pinhole

Objective lens

Beam splitter
Scanner

Sample

Laser

Figure 3.9: Illustration of laser confocal scanning microscope (LCSM). Yellow: excitation light
pathways. Red: emission light pathways.

Laser confocal scanning microscopy (LCSM) has been widely used in biological sciences such as

cell biology [71], and developmental biology [72] due to its ability to obtain high quality [71],

controllable depth field, and elimination of out-of-focus information [73].

Figure 3.9 describes the components of the laser confocal scanning microscope (LCSM) and

the excited and emitted light pathways. The laser produces a high intensity excitation light

that reflects off the dichroic mirror (beam splitter). The light beams are scanned across the

sample and dye in the sample fluoresces. This leads to an emission of fluorescent light. The

emitted fluorescent light from the in-focus point is focused into the pinhole and is detected by

a photomultiplier tube (PMT). However, the emitted light from the out-of-focus point does not

go through the pinhole and is thus largely excluded from the detector. The pinhole diameter is

thus an important parameter to decide the signal to noise ratio and the resolution of the image.

The larger the diameter, the more out-of-focus emitted light will pass through the pinhole,

leading to a brighter image with larger signal to noise ratio, but the resolution will be worse.

A confocal microscope can scan throughout the sample slice by slice through the vertical
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axis. Thus, we can re-build a 3D image of the sample (usually via Fiji ImageJ) after the data

acquisition.

3.2.4 Shadowgraphy

Figure 3.10: Picture of our shadowgraphy set up. The left hand side of the photo shows the
light source, and the right hand side shows the camera

In our soft wetting experiments, the deformation of a very soft PDMS surface is achieved by

filling our previously described cuvette with two different fluids. A heavy liquid is first injected

into the bottom of the cavity until the meniscus reaches about a third to a half of the cuvette

height. The rest of the cavity is then filled with a lighter liquid (or not filled with any liquid if

we measure with air as the second fluid). These two liquids are immiscible such that they form

a triple contact line with the PDMS surface. The motion of the resulting liquid contact line is

induced by a constant flow of the heavier liquid generated with a Nemesys low pressure syringe

pump. The corresponding flow rate of the liquid typically ranges from 0.005 µL/s to 50 µL/s.

Images of the wetting ridge moving along the cavity are acquired with a high-speed camera

placed in front of the cuvette, which is illuminated from behind as presented in Figure 3.10. The

wetting ridge is imaged in the plane of symmetry of the cavity, perpendicular to the optical axis.

This configuration allows to improve the contrast of our images by producing a shadow due to

refraction of the incident light at the surface of the cylindrical cavity. Thus our home-made

shadowgraphy set up allows us to collect images with high spatio-temporal resolution, with only

a limit of optical resolution from the set up itself.

Our setup consists of a combination of different lenses and diaphragms in order to produce a

collimated Köhler illumination, focused into the imaging plane with a 5x microscope objective.

To briefly describe, we form an intermediate image of the light source (the core of an optical

fiber in this case) by focusing the diverging light beams with a first lens called collector. A

first diaphragm (field diaphragm) is placed right after the lens and is used to control the size

of the illuminated area on our sample without changing the intensity. A second diaphragm

(aperture diaphragm) is placed in the focal plane where the intermediate image of the light

source is formed. This aperture diaphragm affects the light intensity via the angles of trans-

mitted light. Thus, tuning the aperture of this diaphragm controls the image resolution. After
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Fluid 2

PDMS

Fluid 1

(a)

(b)

Figure 3.11: (a) Schematic representation of wetting ridge of the PDMS gel cavity (b) Dynamics
of wetting ridge of gel cavity

the aperture diaphragm, we have built a condenser by using several lenses to ensure a homoge-

neous illumination. Finally the light is focused by a 5x microscope objective placed after this

condenser.

The final image of the wetting ridge is formed on the sensor of a camera by a 10x microscope

objective equipped with a tube lens that creates an intermediate focal plane. Typical images of

a moving wetting ridge obtained with this setup are shown in Figure 3.11.

The exemplary images presented in Figure 3.11 (b) are rotated by 90◦. As described in

Figure 3.11 (a), heavier liquid (Fluid 2) is on the left hand side of the wetting ridge, and lighter

fluid (Fluid 1) is on the right hand side. When the heavier liquid is injected into the cavity i.e.

from right hand side to the left hand side of Figure 3.11 (b), the contact line moves to the right.

3.2.5 Image analysis

Images like the ones presented in Figure 3.11 are analysed with an in-house developed Python

code for a sub-pixel edge detection technique. As the prepared cavity itself has an inclination

angle (see Figure 3.3), the undeformed profile of the gel is determined and is then fitted with

a second degree polynomial function. The horizontal and vertical positions of the undeformed

surface are extracted. The detected points of the deformed profile are subtracted with the

extracted undeformed points, resulting in the profile of the wetting ridge as shown in Figure

3.12. The imaging scale is 0.800 µm/pixel. The region within 4 µm left and right side away from

the tip of the wetting ridge look rounded in the detected profile due to the optical resolution

limit.
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(a) (b)

Figure 3.12: (a) Detected profile of a wetting ridge. (b) Fitting of the profile with the suggested
Equations 3.27, and 3.28

The horizontal liquid-solid contact line position is determined by the minimum curvature of

moving window linear fit to the extracted data points. The contact line position is indicated

by the red dashed lines in Figure 3.12.

Due to the apparent asymmetry of the wetting ridge, we fit each side of the contact line

with a fitting equation respectively by using the horizontal contact line position obtained by

the earlier method. For the left hand side that is in contact with bottom fluid the profile is

fitted with a third order polynomial function:

y = a1 + b1x+ c1x
2 + d1x

3. (3.27)

For the right hand side profile in contact with either air or top liquid we used:

y = a2 + b2 log (c2 + x) . (3.28)

When performing thse two fits, a few points (4-6 pixels) at the tip of the ridge within the

resolution limit were not taken into account. Intersection of two fitting curves estimates the

vertical location of the ridge tip, and we can find the solid angles from the slopes of these two

curves. The two important solid angles here are θs, and φ.

v

Figure 3.13: Rotation of a wetting ridge when liquid contact line moves with velocity v. θS is
an opening angle, and φ is a rotational angle of a solid wetting ridge. θ−θeq is a dynamic liquid
angle

Figure 3.13 describes how these angles are defined. θs, is an opening angle of the wetting

ridge. φ represents a rotation of bisector when the liquid meniscus moves with a constant

velocity v. The change of liquid contact angle θ − θeq, when θeq is the stationary liquid angle,

was also recorded in our study.





Chapter 4

Tailoring polydimethylsiloxane

(PDMS) elastomers of different

mechanical properties

4.1 Introduction

Silicone elastomers such as polydimethylsiloxane (PDMS) have a wide range of real-life appli-

cations. Their chemical inertness (except when exposed to strong acids or bases [74]), biocom-

patibility, hydrophobicity, and other properties have attracted researchers of various fields such

as biomedicine [75], electronics, and microfluidics [76].

There are various reactions known for the synthesis of polymers including Michael addition

[77], thio-lene [78, 79], and Diels-Alder [80] reactions. PDMS undergoes catalytic hydrosilylation

reaction which involves an addition of Si-H bonds into unsaturated C=C bonds [81] in the

presence of late-transition metal complex catalyst. Ideally, the molecular weight of the network

are equal to the molecular weight of the pre-polymers (the base polymer and the cross-linker)[82,

83]. In reality, the PDMS network can deviate from the ideal case due to the unbalanced

stoichiometry of the reticulation and steric hindrance [66].

PDMS network formulation is done via mixing a base polymer with a cross-linker, and curing

the mixture under high temperature for a certain period of time (also known as reticulation). It

is well-known that the mechanical properties of these networks change according to the degree of

cross-linking (mixing ratio of a base polymer to cross-linker) within the network. The lower the

degree of cross-linking, the softer the network is [84]. The distance between each cross-linked

chain needs to be increased in order to form soft PDMS gels. There are several approaches

to do so, such as decreasing the concentration of reactive functional group [85], changing the

molecular weight of ingredients [86], or even by using bottlebrush polymers [87].

Commercially available silicone elastomers such as Dow-Corning CY52-276, and Sylgard 184

are the most commonly used materials in microfluidics, electronics encapsulants or pharmaceu-

tical research [34]. Such elastomer kits usually have two different parts named“A”, and “B”,

where one of them is designated as a base polymer and the other as a cross-linker. PDMS

networks formulated with Sylgard 184 are relatively stiff with elastic moduli of a few MPa. The

43
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elastocapillary length of these networks even under a high surface tension liquid such as water

will be in nanometer scale. Thus, these networks are not compatible with our study on the

wetting ridge of the soft surface. Dow-Corning CY52-276 elastomer kit allows us to prepare

networks with elastic moduli ranging from a few kPa to a few tens of Pa, giving rise to the

elastocapillary length of µm. The deformation of these soft surfaces will thus be visible with

our imaging set up.

However, information on the chemical structures or molecular weights on CY52-276 polymers

is rarely given. It is certainly not easy to formulate PDMS gels of different mechanical properties

without sufficient information on the ingredients. We instead use combinations of various base

polymers and cross-linkers of different molecular weight from Gelest, Inc. The PDMS samples

are prepared by varying the mixing ratio between these base and cross-linkers.

The corresponding stoichiometric ratio of each sample is also calculated. The stoichiometric

ratio here refers to the ratio of the initial number moles of vinyl functional group to that of

silane functional group present in the mixture. The stoichiometric ratio can be calculated in

two different ways, firstly by using molecular weights and the functionality of the reactants, and

also by the concentration of reactive functional group in the materials [88].

Mechanical properties of such prepared samples are quantified with a rheometer. Our results

show that the low frequency storage modulus (G0) of the network decreases with increasing

stoichiometric ratio.

When the stoichiometric ratio is larger than 1, there are more number of moles of vinyl

functional group present in the network than that of silane group. Such vinyl group molecules

that are not cross-linked during the reticulation process, remain within the network. These

molecules can migrate freely inside the network and are known to affect the wetting properties

of soft surfaces [89]. For instance, Hourlier-Fargette, et al. showed that the free silicone oil

molecules are extracted by a liquid droplet sliding on a soft PDMS surface, and change the

dynamics of the sliding droplet [48]. Also, Jensen, et al. observed that the PDMS gel phase

separates near the contact line during the adhesion with a rigid object and creates a four-phase

contact zone with three contact lines [56]. Thus, it is important to quantify the amount of free

uncross-linked silicone molecules present in the PDMS network in order to understand their role

in wetting on soft surfaces. Extraction of the free silicone oil with solvent has been proved the

most effective way to quantify the amount of uncross-linked molecules [89, 90, 91]. However,

most of the literatures on the extraction of uncross-linked silicone oil mainly focused on stiff

PDMS gels with elastic moduli between MPa and kPa. We will extend this technique to softer

networks with tunable stoichiometric ratio, in the range of a few tens of Pa to kPa in elastic

moduli.

Extraction ratio of soft PDMS samples in toluene and dichloromethane are recorded respec-

tively. We show that the amount of extracted uncross-linked molecules remain constant within

the error bar regardless of the stoichiometric ratio as long as the ratio is larger than 1.
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4.2 Experimental methods

4.2.1 PDMS sample preparation

We use vinyl-terminated base polymers and trimethylsiloxane terminated (Methylhydrosiloxane)-

dimethylsiloxane copolymer cross-linkers from Gelest, Inc. for preparation of samples. A small

amount of platinum complex catalyst is also added to initiate the cross-linking. The chemical

structures of the two polymers, and the catalyst are illustrated in Figure 4.1, and 4.2. The vinyl

groups at both ends of a base polymer and a silane group of a cross-linker undergo a catalytic

hydrosilylation reaction in the presence of platinum catalyst.

The samples are formulated based on the recipe from Jensen, et al. [56], which involves

two premixes - part A, and B. Part A is a mixture of a base polymer and a catalyst. Part

B is obtained by diluting a cross-linker into the same base, which are unreactive without the

presence of catalyst. This part allows to prevent local cross-linking that could happen if drops

of cross-linker were directly added into the base premix A. Such local cross-linking can be

visualised as lumps in a mixture and can form inhomogeneous structures and disturb the curing

of bulk elastomer [34]. Both parts A and B are degassed in a vacuum pump for approximately

1 minute. Once prepared, parts A and B are mixed together. The mixture is again degassed

in a vacuum pump to prevent any change in cross-linking density due to the presence of air

bubbles.
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Figure 4.1: Chemical structures of (a) a base polymer, and (b) a cross-linker from Gelest, Inc.
Labels M1 to M5 refer to molecular weight of corresponding molecules
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Figure 4.2: Chemical structure of platinum-divinyltetramethyldisiloxane complex catalyst
(SIP6831.2)
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Label Molecule
Molecular

weight (g/mol)

M1 CH=CH2 27.0

M2 SiO(CH3)3 89.2

M3 SiOCH3H 60.1

M4 SiO(CH3)2 74.2

M5 Si(CH3) 73.1

Table 4.1: Molecular weight of labelled molecules

Base
Molecular weight,

MDMS (g/mol)

Viscosity

(mPa · s)
Number of reactive

functional group

DMS-V22 9400 200 2

DMS-V31 28000 1000 2

DMS-V33 43000 3500 2

Table 4.2: Molecular weight, viscosity and the number of functional group in base polymers

Cross-linker
Molecular weight,

MHMS (g/mol)

Viscosity

(mPa · s)
Mole % of reactive

functional group, Nfunc (%)

Equivalent weight,

Wequiv

HMS-053 22500 875 5.00 1475

HMS-082 6000 130 8.00 925

HMS-301 1950 30 30.0 245

Table 4.3: Molecular weight, viscosity, mole % of reactive silane functional group, and equivalent
weight in cross-linkers

Molecular weight, viscosity, mole % of silane functional group, and equivalent weight of each

materials are obtained from Reactive Silicones document from Gelest Inc. [92], and are recorded

in Tables 4.2, and 4.3.

There are two different ways to find the number of moles of silane group m in a cross-linker.

We will label those obtained from each method as m1 and m2.

Equivalent weight (Wequiv) method

First method is by using an equivalent weight Wequiv. The equivalent weight of a polymer is

the mass of polymer with one mole of reactive group (silane group in this case). Wequiv of each

cross-linkers are provided by Gelest, inc. [92]. Thus, we can easily calculate the number of

moles of silane groups present by dividing the molecular weight of a cross-linker MHMS with its

equivalent weight:

m1 =
MHMS

Wequiv
. (4.1)
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Method with mole % amount of silane group (Nfunc)

The second method is by using the percentage amount of silane group in a cross-linker Nfunc.

The molecular mass contribution of the backbone (m×M3 +m×M4) of a cross-linker is equal

to the molecular mass of the cross-linker substracted by molecular weights of two side molecules

(M2 and M5):

m×M3 + n×M4 = MHMS −M2 −M5. (4.2)

The number of moles of backbone molecules in a cross-linker (m + n) is calculated by dividing

total mass contribution of the backbone (m ×M3 +m ×M4) with the molecular mass of each

backbone molecules times their mole percentage:

m + n =
(m×M3 + n×M4)

Nfunc
100 ×M4 +

(
1− Nfunc

100

)
×M3

=
100× (m×M3 + n×M4)

Nfunc ×M4 + (100−Nfunc)×M3
. (4.3)

Substituting Equation 4.2 into Equation 4.3 gives:

m + n =
100× (MHMS −M2 −M5)

Nfunc ×M4 + (100−Nfunc)×M3
. (4.4)

m2 is then the total number of moles of backbone multiplied with the mole percentage of silane

functional group:

m2 =
Nfunc × (m + n)

100
. (4.5)

For accuracy of our calculation, we use an average of m1 and m2 as m.

Cross-linker m1 m2 m

HMS-053 15.3 15.2 15.2

HMS-082 6.49 6.39 6.44

HMS-301 7.96 7.67 7.81

Table 4.4: m1, m2, and m of cross-linkers used

All of the base polymers only have two vinyl functional groups at both end of their chain as

illustrated in Figure 4.1(b), and thus, the number of moles of reactive functional group in base

polymers is simply 2.

Ratio of the number of moles of silane group to that of vinyl group is expressed as:

Mole ratio =
m

2
. (4.6)

Mass ratio of base polymer to that of cross-linker is the mole ratio multiplied with the ratio of
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molecular mass of a base to that of a cross-linker:

Mass ratio = Mole ratio× MDMS

MHMS
(4.7)

Cross-linker Mole ratio

HMS-053 7.61

HMS-082 3.22

HMS-301 3.91

Table 4.5: Mole ratio

HMS-053 HMS-082 HMS-301

DMS-V22 3.18 5.05 18.8

DMS-V31 9.48 15.0 56.1

DMS-V33 14.6 23.1 86.1

Table 4.6: Mass ratio

Using the mole ratio from Table 4.5, we can calculate the mass ratio of base polymer and

cross-linker and is recorded in the Table 4.6.

The stoichiometric ratio nA/nB is expressed as:

nA

nB
=

µDMS
µHMS

Mass ratio
(4.8)

when µDMS is the total mass of a base polymer and µHMS that of a cross-linker used. If nA
nB > 1,

there is more vinyl group than silane group present in the mixture.

Sample Ingredients nA/nB

1 80.0wt% DMS-V22, 20.0wt% HMS-082 0.79

2 83.3wt% DMS-V22, 16.6wt% HMS-082 0.99

3 96.0wt% DMS-V33, 4.00wt% HMS-082 1.04

4 98.9wt% DMS-V31, 1.01wt% HMS-301 1.76

5 96.7wt% DMS-V31, 3.22wt% HMS-082 2.00

6 97.5wt% DMS-V22, 2.50wt% HMS-301 2.07

7 96.9wt% DMS-V31, 3.02wt% HMS-082 2.13

8 97.0wt% DMS-V31, 2.95wt% HMS-082 2.18

9 97.2wt% DMS-V31, 2.77wt% HMS-082 2.33

10 94.0wt% DMS-V22, 6.01wt% HMS-082 3.10

11 98.5wt% DMS-V22, 1.50wt% HMS-301 3.49

12 97.3wt% DMS-V31, 2.70wt% HMS-053 3.80

13 89.9wt% DMS-V31, 2.51wt% HMS-053 4.10

Table 4.7: Recipe of each samples in an increasing order of stoichiometric ratio nA/nB

PDMS samples are prepared with the ingredients listed in Table 4.7 and the stoichiometric

ratio of each formulated sample is calculated with the above-mentioned methods.
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4.2.2 Rheometry of prepared PDMS samples

Mechanical properties of each sample are measured with Anton Paar MCR 502 rheometer.
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Figure 4.3: An examplary rheological measurement of a PDMS network. Storage modulus
G′ (blue dots), and loss modulus G′′ (dark yellow dots) are measured with varying rotational
frequency ω. Solid lines are fitting of measured data with a power law equation. We can extract
low frequency storage modulus G0, and relaxation time τ from this rheological data

An uncured mixture of elastomers is deposited between a ceramic (bottom) plate of the

rheometer and the upper parallel plate (PP50 or PP25, according to their diameter) attached

to the rotor of the rheometer. As the temperature of the rheometer can be controlled by a

thermostat connected to it, the reticulation of this mixture is done within the apparatus. The

curing protocol is described in Section 3.2.1.

Once the curing process completes, the tempearature of rheometer decreases to 20◦C, and

the rotor in which the upper plate is connected to shears the PDMS network with varying

angular frequency ω.

Figure 4.3 shows an exemplary frequency sweep rheological data of a PDMS gel. Blue data-

points indicate the measured storage moduli G′ and dark yellow points represent the measured

loss moduli G′′ with a change in angular frequency ω.

At high frequency, the loss modulus G′′ (yellow data) is higher than the storage modulus

G′ (blue data), which indicates that the viscous portion of the sample is more dominant. As

the rotational frequency decreases, the two moduli curves eventually intersect, and the elastic

portion of the solid becomes more dominant (i.e. G′ > G′′). G′ starts to plateau after the

intersection point. The frequency at which G′ and G′′ cross is equal to 1/τ , when τ is the relax-

ation time. When a viscoelastic material is deformed by a high angular frequency, the elastic

stress is stored within the material and is relaxed through a rearrangement of the molecules or

particles. During the relaxation, the elastic stress is converted to a viscous stress due to the

friction between these microstructures. The viscous stress is dissipated within the material as

a form of heat. As discussed in Section 3.2.1, real viscoelastic materials such as PDMS have a

spectrum of relaxation times, and their complex moduli can be expressed in a power law form

with an exponent n:

G∗ = G0(1 + (iωτ)n), (4.9)

where G0 is a low frequency storage modulus (a G′ at ω = 0). The rheological spectrum such
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as Figure 4.3 is then fitted with the Equation 4.9 to extract the quantities of G0, τ , and n. The

fit is represented by the two solid lines in Figure 4.3.

G0 lets us to predict the stiffness of the sample, and the longest relaxation time of the

material τ can be useful for predicting the viscoelastic response of the material when stressed

for a given period of time.

The entanglement molecular weight of a polymer is defined as the molecular weight between

entanglements (see Section 2.3.1). For the base polymers with molecular weight below the

entanglement threshold, they tend to produce PDMS gels with exponents n between 0.4 and

0.7 [93]. In contrast, the pre-polymers above the entanglement molecular weight form gels

with lower rheological exponents between 0.2 and 0.4 [93]. The stoichiometry between the two

reactive functional groups are known to affect the exponent n of these two categories [93] .

We also observe a deviation of measured loss modulus from power law at small angular

frequency ω as illustrated in Figure 4.3. Such deviation can be explained by a minimum in-

strument torque limit. The rheometer instrumental limit will be further discussed in Section

4.4.

4.2.3 Extraction of uncross-linked molecules

Approximately 4 g of uncured PDMS sample mixture is poured into a glass bottle of volume

50mL and is reticulated in the oven for two days. A solvent is then poured onto the cured

PDMS network. We use toluene and dichloromethane (DCM) as extracting solvents, as PDMS

is soluble in both solvents [57].

The degree of swelling of silicone network is determined by the balance between the elastic

force of the networks and the thermodynamic mixing interaction between the swelling solvent

and the network as explained earlier in Section 3.1.2 [65]. According to the Flory-Rehner theory

(see Equation 3.13), The larger the degree of cross-linking (i.e. smaller molecular mass between

the cross-links indicated as Mc in Equation 3.13), the less swelling of the PDMS is observed

[65]. The complete swelling occurs when these two contributions (thermodynamic and elastic)

are in equilibrium. The maximum swelling of the network creates a chemical potential gradient

between the network and the solvent, leading to the migration of the uncross-linked molecules

to reduce the difference of chemical potential between the swelling solvent and the PDMS gel.

Hence, it is necessary to have a large amount of solvent compared to the sample (around 10

times more in volume) to maintain the difference in chemical potential [89].

The glass bottle is closed with a screw cap afterwards to prevent any solvent evaporation.

After 72 hours, the solvent is poured out from the bottle, and the swelled PDMS gel is dried

under a fumehood for 48 hours (without the cap) to let the remaining solvent to evaporate.

The 48 hours of minimum solvent evaporation period is determined by the plateau of the final

mass of the gel measured over a period of a week. The mass of the gel before and after swelling

is measured, and the swelling ratio nswell is determined as:

nswell =
Msf

Mef
, (4.10)
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where Msf is the final mass of the gel after swelling and pouring the solvent out, and Mef refers

to the final mass of the gel after an evaporation of the solvent. Similarly, the extraction ratio

next is given as:

next = 1− Mef

Mi
, (4.11)

when Mi is the initial mass of the gel before adding the solvent. The same swelling and extraction

processes are repeated three times for every measurement until the mass remains constant, and

the final nswell, and next are the average of the ratio obtained after every measurement.

4.3 Results and discussion

4.3.1 Mechanical properties of prepared PDMS samples

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13

nA/nB 0.79 0.99 1.04 1.76 2.00 2.07 2.13 2.18 2.33 3.10 3.49 3.80 4.10

G0[Pa] 332000 136000 13600 2180 343 9580 185 118 24.0 29.1 94.7 301 157

τ [s] - - 0.00781 0.0250 0.129 - 0.276 0.518 3.76 0.608 0.0943 0.0776 0.184

Table 4.8: Low frequency storage modulus G0, and relaxation time τ in an increasing order of
stoichiometric ratio nA/nB
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Figure 4.4: Low frequency storage modulus (G0) vs stoichiometric ratio nA/nB for each material
combination. Data from Table 4.8 are represented as the transparent points

In Figure 4.4, we present the stoichiometric ratio dependence of the PDMS network stiffness.

This also includes the samples that are not used in the swelling and extraction experiments.

The datapoints of the 13 samples mentioned in the Table 4.8 are represented as the transparent

points in this plot. The low frequency storage modulus G0 of our PDMS samples decreases

with an increase in the stoichiometric ratio nA/nB between vinyl and silane functional groups

for every material combination.

As already discussed in Section 4.2.1, the uncross-liked chains are still present within the

network when nA/nB > 1, i.e. there is an excess of vinyl funtional group. With very few cross-

linked polymers, we expect these gels to be soft. In other words the smaller the cross-linking

density, the smaller the elastic modulus. The measurements we have obtained for the samples
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presented above are thus consistent with our expectation.

Furthermore, Figure 4.4 highlights that we can formulate elastomers with stiffness spanning

over almost four decades of elastic moduli by using the same ingredients but simply by altering

their mass percentage in the mixture.

The effect of the mole % of a reactive functional group in the cross-linker and the base

polymer molecular weight on the stiffness of samples will be discussed in detail later in Section

4.4.

4.3.2 Degree of swelling and extraction of PDMS networks

As mentioned in the beginning, the presence of uncross-linked silicone molecules within the

PDMS network is known to affect the wetting behaviour of the PDMS surface. Since our

formulated PDMS networks are expected to contain a large amount of uncross-linked chains, it

is important to quantify their amount.

It has been already studied that the swelling of PDMS changes significantly with a change

of base polymer/cross-linker ratio [94, 95, 96]. Stafie, et al. observed the degree of swelling of

PDMSmembranes (G0 =0.35, 0.50, and 0.77MPa) in hexane according to the base polymer/cross-

linker ratio [66]. When the chain length between the networks is shorter (i.e. higher storage

modulus), the elastic resistance to the swelling stress get stronger, and thus the amount of

swelling will be less [66].

Sample nswell next

1 5.38 0.0380

2 6.35 0.106

3 11.05 0.282

4 7.16 0.410

5 6.85 0.374

6 8.27 0.583

7 8.64 0.491

8 6.28 0.305

9 7.18 0.339

10 12.2 0.519

11 4.68 0.313

12 6.07 0.431

13 6.28 0.407

Table 4.9: Swelling and extraction ratio of
elastomer samples in Toluene

Sample nswell next

1 7.50 0.0329

2 6.81 0.169

3 16.0 0.197

4 8.23 0.331

5 13.5 0.617

6 9.60 0.438

7 7.63 0.302

8 12.4 0.550

9 12.2 0.468

10 9.38 0.507

11 6.53 0.367

12 9.25 0.520

13 10.1 0.559

Table 4.10: Swelling and extraction ratio of
elastomer samples in DCM
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(a)

(b)

Figure 4.5: nswell, and next of PDMS samples with their corresponding stoichiometric ratio
nA/nB in (a) toluene, and (b) DCM

Figure 4.5 shows the swelling and extraction ratios as a function of the corresponding nA/nB,

for our samples immersed in toluene and DCM. The error bar has been obtained by determining

the standard deviation of the presented data. We can observe two distinct regimes for next. For

nA/nB < 1, almost no free oligomer chains are extracted by the both solvents, and the amount

starts to drastically increase with an increase in stoichiometry. On the other hand, the extraction

ratio of PDMS elastomers starts to saturate from nA/nB > 2, regardless of the solvent used.

This implies that the degree of extraction does not depend on nA/nB when there is a large

stoichiometric unbalance in the PDMS mixture.

In order to study the effect of elastic moduli on nswell of PDMS samples, we also present

the ratios as a function of storage modulus G0 in Figure 4.6. Our result shows that the degree

of swelling nswell is independent of G0, being inconsistent with the observation of Stafie, et al.

However, we need to note that the experiment by Stafie, et al. only used very stiff gels with G0

in magnitude of MPa, at least ten times larger than the stiffest PDMS sample prepared by us.
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(a)

(b)

Figure 4.6: Swelling ratio, and extraction ratio of gels with corresponding G0. Top: Toluene,
Bottom: DCM

Figure 4.7: nswell of samples swollen in toluene and DCM as a function of stoichiometric ratio
nA/nB
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Continuing the study of the degree of swelling of samples, we compare nswell of PDMS

networks in toluene and DCM in Figure 4.5. The swelling ratio of most of the samples swelled

in DCM is approximately 1.5 times higher than that swelled in toluene.

On the other hand, Lee, et al. found that the degree of swelling of solid Sylgard 184 PDMS

(G0 ≈ 1628 kPa) is slightly higher in toluene (nswell=1.31) than in DCM (nswell=1.22) [57]. It

is important to note here that they determined the swelling ratio by comparing the length of

PDMS samples before and after swelling, instead of comparing the mass like in our study. Such

approach is not feasible with our very soft gels, as they cannot be detached easily from the

glass bottles. The difficulty of removing the soft gels from the glass surface is not a surprising

phenomenon, as studied by Tiwari, et al. in 2017 [97]. They investigated the adhesion between

PDMS elastomers and glass or acryllic balls based on Johnson-Kendall-Roberts (JKR) theory.

It was found that the work of adhesion increased by a factor of two for the glass ball pulled

away from a soft PDMS surface when compared to that for the smooth acrylic ball [97]. On the

other hand, the opposite trend of the work of adhesion was observed in a rigid PDMS surface,

in which it decreased by a factor of 700 for the glass ball [97].

Also, fracture of our prepared PDMS samples is observed during the swelling procedure.

For the soft PDMS gels, the degree of swelling (between 5.0 and 15.0 for most of our samples)

is much higher than that of stiff networks from Lee, et al (around 1.3). Thus, they need a large

container to accommodate such large amount of swelling. Fracture of the samples can occur if

the container is not large enough [89]. When the small fractions of fractured soft gels are present

on the surface of swollen PDMS network within the solvent, it becomes more difficult for us

to pour away the remaining solvent without removing those small fractions of gels at the same

time. Thus, we always leave a small portion of solvent inside the sample before evaporating the

sample to measure extraction ratio to prevent any loss of swollen gels. This affects the final

mass of swollen samples, possibly explains the discrepancy of our data from the literature of

Lee, et al. [57], and Stafie, et al [66].

Toluene DCM

nswell 6.12 12.4

next 0.411 0.462

Table 4.11: Degree of swelling and extraction of CY52-276 A:B=1:1

The swelling and extraction ratio of Dow-Corning CY52-276 sample with a mixing ratio

A:B=1:1 (G0 = 1050Pa) are also measured and recorded in Table 4.11. Looking at the high

next of the sample in both solvents, we can deduce that the stoichiometric ratio of the gel is

above 1. The degree of network swelling is again a few times larger than that presented by Lee,

et al., and nswell of the sample in DCM is approximately 2 times larger than that swollen in

toluene. This again emphasises that the swelling ratio depends on the storage modulus of the

sample.
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4.3.3 Conclusion

We have successfully formulated PDMS networks of different mechanical properties with a in-

house recipe involving a stoichiometric ratio of vinyl and silane functional groups. A wide range

of achievable gel stiffness highlights the versatility of our method.

With such gels, we observe an increase in the amount of extracted uncross-linked molecules

at lower stoichiometric ratio and a saturation of this quantity at higher ratio. This result shows

that the extraction of free oligomers by using a large amount of solvent can not be used to

determine the degree of cross-linking for soft PDMS gels. Also, the degree of swelling that is

a few times larger than that reported in the literature shows that the swelling ratio heavily

depends on the stiffness of the PDMS network.

4.3.4 Outlook

There has been a growing interest in the role of uncross-linked silicone oils at the contact

line of soft deformable PDMS surfaces [48, 49, 50]. In order to understand this phenomenon,

quantifying the mechanical properties of PDMS networks without the excess uncross-linked

molecules is necessary. For very soft PDMS materials, extraction of free oligomers inside a

closed container leads to destruction of the orignial shape of the PDMS solid [89], as already

explained in Section 4.3.2. Also, the gel can exfoliate during its rapid drying process (as the

solvent evaporates) [98]. Cracks on the surface of the swollen gel are formed due to the shrinking

of the gel upon drying, and propagate into the bulk of the gel as the drying progresses. A thin

superficial layer peels off and exposes the bare surface of the gel underneath [98].

Thus, the extracted PDMS samples can not be used for further analysis of their mechanical

properties due to the failure to retain their original shape.

Glover, et al. recently suggested an interfacial extraction set up that yields a similar amount

of extracted molecules as the closed container method but retains the original shape of the

network for Sylgard 184 PDMS samples with elastic moduli up to 7 kPa [89]. A water soluble

layer of polyacrylic acid (PAA) is coated on a glass substrate, followed by a thin film of PDMS

layer via spin coating. After reticulation of the PDMS layer, the prepared substrate is floated

on a water bath, and the PAA layer dissolves over time, leaving the cured PDMS thin layer

floating alone on top of the water surface (as the density of PDMS is similar to that of water)

[49]. A solvent is then introduced onto the PDMS surface to swell the network. The water bath

is sealed with a lid (or aluminum foil) to prevent evaporation of the solvent [89].

The same methodology could also be used for swelling and extraction of very soft PDMS

solids from our formulation recipe. The mechanical properties of the soft gels after a removal

of free silicone chains will then be quantified with a rheometer.

Beyond the high potential of such deformable surfaces to tackle soft wetting problems as

will be presented in Chapter 6, there is also a strong relevance of the soft gels for biological

implication. Indeed, a soft PDMS surface can serve as a model soft in-vitro environment with

its stiffness comparable to the brain tissues, as we will describe in the next chapter.
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4.4 Appendix
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Figure 4.8: Rheology of prepared samples in order of decreasing stoichiometric ratio

The solid lines in the rheology plots of softer samples indicate the fit of power law equation

G∗ = G0 (1 + (iωτ)n) with the measured moduli. As mentioned briefly in Section 4.2.2, the

loss moduli of most of the PDMS samples deviate from power-law behaviour at low angular

frequency ω region, typically below ω = 0.010 rad/s, when G′′ < 10Pa.

Ewoldt, et al. described commonly faced challenges when measuring the mechanical proper-

ties of materials with a rotational rheometer [99]. Figure 4.9 indicates instrumental error regions

for the rheometry of hagfish gel (G′′ ≈ 0.2Pa in a concentric cylinder measurement geometry.

The possible sources of measurement error are insturmental low torque limit for small angular

frequency ω region, and inertial effects from the instrument at high ω region.

For our system the main error arises from the instrumental torque limit [99]. This torque

limit is usually provided by the manufacturers. For our Anton Paar MCR 502 rheometer, the

given minimum rotation torque limit is as 100 nNm. The minimum measurable shear stress τ
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Figure 4.9: Low torque and instrument limit for oscillatory frequency sweep measruement of
soft hagfish gel. Republished with permission from [99]

is proportional to the minimum torque Tmin with conversion factor Fτ :

τ = FτTmin. (4.12)

For a frequency sweep rheology with constant shear strain γ0 (0.01 for our case), the minimum

measurable moduli Gmin is expressed as:

Gmin =
FτTmin

γ0
, (4.13)

Gmin can be either G′ or G′′ but is usually the loss moduli G′′ for our system.

Figure 4.10: Dimensions of a sample sandwiched between a top parallel plate and bottom
ceramic plate, Ω here refers to the torque T . Republished with permission from [100]

The conversion factor Fτ is expressed as:

Fτ =
1

2πR2L
. (4.14)

Referring to the schematic description of parallel plate geometry in Figure 4.10, R refers to

the radius of upper parallel plate for our geometry, and L is the minimum gap (the height of

the deposited sample). For our rhelogical measurement set up, R = 25mm, and L = 0.5mm.

Calculating the Equation 4.13 by plugging in the given values gives Gmin = 5.10Pa, which

indeed falls into the region below which the loss moduli deviates away from the power-law.

The same estimation can then possibly be used for the maximum measurable moduli. Look-
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ing at the measurable moduli dependence of geometry plate radius R, G increases with a

decrease in R. Thus, a measuring geometry with smaller plate radius can be used for more

precise measurement of stiff gels.
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Figure 4.11: Rheological measurement of Sample 1 with (a) PP50 (R = 25mm), and (b) PP25
(R = 12.5mm

Indeed, as depicted in Figure 4.11, we obtain a more reliable rheological data of the stiffest

gel of the samples when measured with a parallel geometry plate (PP25) with R = 12.5mm.

Also, larger low frequency storage modulus G0 is obtained from the measurement with PP25.

Figure 4.12 shows G0, τ , and exponent n of PDMS gels from the rheological measurements.

Datapoints of the samples that are used for swelling and extraction experiments are made

transparent in Figure 4.12 (a). As these experiments require a large volume of solvents in

every step, not all of the prepared elastomers are used in these measurements. The samples

from almost every material combination, and those with very different stoichiometric ratio are

chosen for the swelling and extraction process.

In order to describe how does the storage modulus of the gel depend on the base polymer

molecular weight or the concentration of reactive functional group in cross-linker, a red dashed

vertical line that crosses the most number of ingredient combinations is drawn across the plot

in Figure 4.12 (a). When we compare the storage moduli along this vertical line of different

material combination, we find that networks formed with DMS-V22 base polymer have the

smallest storage moduli, followed by DMS-V31, and DMS-V33. Referring to Table 4.2, we can

conclude that G0 of the network depends on the molecular weight of base polymer. The higher

the molecular weight of the base polymer, the stiffer the network.

On the other hand, the concentration of silane group in a cross-linker does not seem to

affect the storage modulus of the network. PDMS elastomers formulated with HMS-082 have

the smallest G0, followed by those with HMS-301, and HMS-053. However, the mole percentage

of reactive silane group of HMS-053 is the smallest, and that of HMS-301 is the largest.

The amount of reactive functional group per molecule, though, seem to affect the storage

modulus of the gel. HMS-053 has almost double the amount of silane functional group per

molecule as compared to HMS-082 and HMS-301 (see Table 4.5). Thus, it is reasonable to

observe higher storage moduli of the PDMS gels prepared with HMS-053 cross-linker than the

others with HMS-082 and HMS-301.
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Figure 4.12: Plots of rheological quantities (a) low frequency storage modulus G0, (b) relaxation
time τ , and (d) exponent n of PDMS gels as a function of stoichiometric ratio between vinyl
and silane groups nA/nB. (c) Relationship between τ and G0. These four plots also include
rheological measurements from the gels that were not used in the extraction process. For (a):
measurements from the samples used for swelling and extraction are blurred, and the red dashed
line crosses the most number of ingredient combinations and will be used later in this section

Figure 4.12 (b), and (c) show an increase of relaxation time τ as a function of stoichiometric

ratio, and a linear decrease as a function of G0, as already explained in 4.2.2.





Chapter 5

Liquid-liquid phase separation of tau

protein droplets on a soft PDMS

surface

5.1 Motivation

Within any eukaryotic cell, a plethora of organelles can be found. These organelles, acting as

compartments, contain elements of the biomolecular machinery of the cell and carry specific

functions. Organelles are usually enclosed by their own membrane, composed of a phospholipid

bilayer [101]. There are also organelles that are not bound by these traditional lipid bilayers,

and thus they are called membrane-less organelles [102]. Membrane-less organelles such as P

granules, nucleoli, or stress granules possess the typical characteristics of liquids and are formed

via liquid-liquid phase separation [103]. This process allows rapid and reversible condensation of

specific proteins and nucleic acid molecules into compartments in which biomolecular exchanges

with the surrounding cytoplasm and nucleoplasm occur [104].

Among these different proteins, we can find tau proteins which are microtubule-associated

and located in the membrane-less organelles of human brain cells. Wegmann, et al. suggested

that tau proteins can undergo liquid-liquid phase separation within the cellular environment

and that phase separated tau droplets can cause aggregation of these proteins [105]. Such ab-

normal changes of the proteins conformation are known to cause neuro-degenerative diseases

like Alzheimer’s and dementia [104].

In this context, we aim to understand the liquid-liquid phase separation of tau proteins on

brain tissues. Owing to their liquid-like behaviour, it is reasonable to use liquid droplets as

a simple model system to mimic membrane-less organelles. Brain tissues on the other hand

are very complex biological structures made of many different types of cells. These tissues are

among the softest ones within the human body with a typical elastic modulus of 0.5-1 kPa [106,

107, 108]. The production of model systems that are able to capture the complexity of brain

tissues usually requires heavy tissue engineering or microfluidic tools [109]. In our approach,

we propose a soft in-vitro model environment with a stiffness comparable to the brain tissue.

63
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5.2 Experimental methods

PDMS substrate preparation

Fluorescent particles

PDMS 

Cover slip 

(a) (b)

Figure 5.1: (a) 3D representation of a model system for soft in-vitro environment: a flat PDMS
substrate is coated on a glass slide and fluorescent particles are deposited at the gel surface.
(b) Rheology of the soft silicone mixture used. The stiffness of the gel is G0 = 113Pa.

In order to prepare very soft surfaces, Dow-corning CY52-276 PDMS A and B are mixed in

a ratio of 1.3:1 to form a silicone gel. The prepared and still uncured PDMS mixture is then

coated on a glass cover slip (dimension: 24mmx24mm) with a spin coater at a rotational fre-

quency of 3000 rpm for 38 s to achieve a final thickness of about 100 µm. Finally the gel is cured

in an oven at 75oC for two days. The cured PDMS substrate is then dip coated in a solution of

fluorescent particles for one minute, to form a layer of tracers at the top of the gel as illustrated

in Figure 5.1 (a). The fluorescent particles are water-soluble carboxylate-modified microspheres

with a diameter of 100 nm (FluoSpheres™ from Invitrogen™). The presence of these particles al-
lows to track the deformation of the soft surfaces with a confocal microscope, as described later.

To characterise the mechanical properties of our PDMS surfaces, we have extracted the

rheology of a small amount of the very same cured gel with a rheometer (Anton Paar MCR

502). Figure 5.1 (b) shows a typical rheology of this PDMS mixture. The low frequency storage

modulus (G0) of the elastomer is 113Pa, which is compatible with the stiffness of brain tissues.

We note here that the rheology of the gel is obtained without any fluorescent particles added

to the PDMS. As the size of the fluorescent particles is negligible compared to the thickness of

the substrate, we assume that they do not affect the rheology of the PDMS gel.

Tau protein droplet formation

Tau proteins are fluorescently labelled with a Microscole Protein Labeling Kit (Alexa Fluor™
488 from Invitrogen™). An assay buffer, made of a mixture of 25mM HEPES and 2mM DTT,

is mixed with the labelled tau proteins and 60nM Polyuridylic acid (from Sigma-Aldrich). The

phase separation of tau proteins is induced by addition of 2.5% crowding agent dextran T500

(from Pharmacosmos).
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Figure 5.2: Laser confocal microscope image of tau protein droplets sitting on a PDMS substrate.
On this image, the droplets are seen in green and the surface in red. Non-spherical droplets are
the coalescing droplets

A drop of the prepared mixture is finally deposited on the PDMS substrate. Due to the

immiscilibity of tau protein droplets in the buffer solution, the freshly deposited drop then phase

separates into smaller droplets. Coalescence events of these droplets and their corresponding

z-stack profiles are recorded at 0.9 fps with an Olympus Fluoview laser fluorescence confocal

microscope equipped with 60x objective. An example of acquired confocal image in the plane

of the gel surface is shown in Figure 5.2. The surface of the PDMS substrate is observed in

the red fluorescent channel and the green fluorescent channel of the image shows tau protein

droplets. These droplets exhibit a spherical shape before or after a coalescence event, and an

elliptical (or non-spherical) shape during the process of coalescence.

5.3 Results and discussion

The coalescence dynamics of liquid drops, or membrane-less organelles, is mainly determined

by two important parameters: surface tension and viscosity [103]. This ubiquitous phenomenon

have been the subject of numerous studies, especially on the initial coalescence of two liquid

droplets [110, 111, 112]. Let us now briefly summarise the main theoretical elements needed to

understand droplet coalescence.

Two distinct stages are observed during the coalescence of sessile drops on a substrate:

a rapid initial growth of the liquid meniscus bridge between the drops, followed by a slow

rearrangement of the shape of the combined drop from elliptical to circular shape [113].

The coalescence phenomenon of sessile drops is different from that of suspended drops due

to the geometry. Suspended drops are axisymmetric [110, 114], whereas sessile drops are

anisotropic as the symmetry breaks due to the presence of a substrate and thus a contact

line [115]. For instance, the growth rate of the meniscus bridge between two suspended drops
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depends very weakly on the size of the drop, however the size dependence is more significant

for the sessile drops.

Ristenpart, et al. investigated the early stage of the coalescence dynamics of viscous liquid

droplets, for which spreading on a substrate is driven by surface tension [113]. They observed,

both experimentally and numerically, that the width d of the liquid meniscus bridging two

merging droplets is governed by a simple scaling law:

d =

(
γh30
µR2

0

t

)1/2

(5.1)

where γ is the surface tension, µ is the dynamic viscosity, R0, and h0 are the drop radius, and

height respectively.

In our experiments, we characterise the coalescence of two tau protein droplets by measuring

the associated temporal evolution of the diameter of liquid meniscus bridge. Also, we show how

the capillary velocity γ/µ of the coalescing droplets can be calculated from our measurements.

(a)

(b) (c)

Figure 5.3: (a) Coalescence dynamics of tau protein droplets, scale bar: 10 µm, timestep: 1.10 s.
Fluorescently labelled protein droplets appear in green, and the small red dots correspond to
the fluorescent particles in the PDMS gel (b) Two coalescing protein droplets with a meniscus
bridge width d, and initial radius R0. (c) Side view of a tau protein droplet on the PDMS
surface reconstructed by z-stack imaging of laser confocal microscopy. The height of the droplet
is h0.

A typical series of images of protein droplets coalescing on a PDMS substrate is presented in

Figure 5.3 (a). When two protein droplets are close enough to each other, and with negligible

initial velocities, they eventually merge into a bigger droplet [116]. A small liquid meniscus

bridge (or neck) is then formed, as shown in the time series images, and grows rapidly over time

under the influence of capillarity in this meniscus. The velocity at which the bridge widens
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decreases over time, as the merged droplet increases in volume and becomes more circular [113].

In our experiments, the neck width d and the initial radius R0 of the droplets are measured

by a visual analysis of the confocal images, as presented in Figure 5.3 (b). The initial radius of

the droplet is obtained by averaging the radii of two merging droplets before their coalescence.

By scanning the droplet along the z-axis with the confocal microscope, we are able to virtually

reconstruct a side view of the drop, allowing us to determine the droplet height h0 (see Figure

5.3 (c)). Although it is possible to obtain a z-stack image of a droplet while the time series

acquisition is running, due to the low frame rate of the confocal microscope (about 0.9fps),

we cannot track the height evolution of the two droplets during their coalescence. Instead,

we acquire the z-stack images of the protein droplets at equilibrium, i.e. after their coales-

cence has ended. Assuming that the total volume of each protein droplet remains constant, we

determine the height h0 of tau protein droplet that has similar radius as R0 of coalescing droplet.

(a)

(b)

Figure 5.4: (a) Time evolution of the width d of the liquid meniscus formed between two merging
protein droplets. Different droplet sizes are presented. (b) Re-scaled width as a function of time
for the same droplet sizes.

In Figure 5.4 (a), we present the time evolution of the meniscus bridge width d of two coa-

lescing droplets of similar radii, measured for different droplet sizes. For the sake of clarity, we

only show the measurements for three different droplets radii here, ranging from the smallest
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coalescing droplets observed to the largest ones. The full set of measurements for 16 different

droplet radii can be found in appendix. droplet Due to the low frame rate of the confocal micro-

scope and the relatively fast coalescence dynamics, our measurements are basically limited to

four consecutive frames. The first frame (t = 0) corresponds to the frame before the meniscus

bridge is observed and thus d = 0. As we can see, the radius d increases with t, and starts to

saturate at longer time. This implies that the growth rate of the bridge decreases over time for

two coalescing protein droplets, just as observed for the pure liquids.

To unravel the time dependence of the liquid meniscus bridge width of coalescing tau protein

droplets, one would naturally plot d in a log-log scale. This would then allow us to easily identify

the exponent associated to the power law followed by the meniscus bridge width.

However, due to the aforementioned limitations in temporal resolution, it appears very

complicated to differentiate the two regimes as our data points barely span half a decade in t

properly. Therefore, we use a different approach which consists of scaling our data with the

initial droplet radius R0 and height h0 instead. By plotting the scaled meniscus bridge width

d2/(h30/R
2
0) against time, according to the dependence presented in Equation 5.1, we obtain a

nice collapse of the different data points within the error bar (see Figure 5.4 (b)). This implies

that the tau protein droplets can be treated as viscous liquid droplets, and that their early stage

coalescence dynamics is similar.

Using the above-mentioned Equation 5.1 and our measurements of the meniscus bridge width

d, we can also estimate the capillary velocity γ/µ for each set of coalescing droplets. Indeed,

knowing the height h0 of the droplet, the capillary velocity can be calculated directly from the

slope of the scaled width as a function of time presented in Figure 5.4 (b). We find that the

capillary velocity of tau protein droplets is γ/µ =(8.90± 3.77) µm/s (see Table 5.1), which is in

a very good agreement with the value 8.33 µm/s found in P granules proteins of Caenorhabditis

elegans by Garfinkle, et al. [117].

5.4 Conclusion and outlook

In summary, we studied the liquid-liquid phase separation of tau protein droplets on a soft

PDMS surface, and more specifically we investigated the coalescence of these droplets.

We show that tau protein droplets behave similarly to viscous liquid droplets and therefore

that their coalescence dynamics can be described by using the same scaling law. For instance,

we highlight the characteristic signature of this viscous regime by showing that the width of the

liquid meniscus bridging two coalescing tau proteins droplets clearly depends on the drop radius.

Furthermore, we show that our measurements can be used to indirectly estimate the capillary

velocity γ/µ, without the need of knowing any of these two quantities. For example, one could

imagine a similar procedure using the extracted capillary velocity to estimate either the surface

tension or the viscosity, knowing the other characteristics. Such approach could represent an

interesting alternative to current techniques, not necessarily adapted to micron-sized droplets.
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Initially, we expected to determine the surface tension of tau protein droplets by resolving

the wetting ridge of the deformed soft PDMS surface underneath the droplet. However, we

observed almost no deformation of our formulated soft gels, which implies that the surface

tension of the tau proteins is then extremely small. Indeed, Brangwynne, et al. estimated the

surface tension between the C. elegans protein found in P granules and the cytoplasm around

1 µN/m [103]. This is more than 4 orders of magnitude smaller than the interfacial tension

between the buffer (which is mainly water) and a soft PDMS substrate (γ = 42.4mN/m).

Thus, the unbalance of these two interfacial tensions in vertical direction will lead to almost no

deformation of the surface.

We can also realise the difficulty of inducing a surface deformation by estimating the corre-

sponding elasto-capillary length of a soft PDMS substrate of elastic modulus G0 = 100Pa. We

found that the elasto-capillary length is 10 nm, very small compared to the substrate thickness

of 100 µm. Thus, the elasto-capillary length is too small to see any deformation (this is equiva-

lent to the case of water droplet on a rigid glass surface).

Figure 5.5: Capillary length of a tau protein droplet from the acquired experimental data. The
capillary length was calculated from the droplet shape with a MATLAB code developed by
Ijavi, et al. [118]. The red dashed line shows the detected profile of the droplet.

Ijavi, et al. measured the surface tension of protein and polymer droplets based on the

analysis of the shape of an axisymmetric sessile droplet [118]. Figure 5.5 shows a reconstructed

black-and-white z-stack image of one of our tau protein droplets. The MATLAB script developed

by Ijavi, et al. is used to find the capillary length of the droplet. We obtain a capillary length

of 87.2 µm.

In the beginning of the phase separation process, the protein droplets actually first sink onto

the substrate plane before coalescing. By using a confocal microscopy to track droplets over

time as they sink through an image plane, we can determine the sinking speed of droplets with

different size. This will allow us to deduce the density contrast ∆ρ between the protein droplets

and the buffer solution. The capillary length lc is given as:

lc =

√
γ

∆ρg
, (5.2)

where γ the surface tension between the protein droplet and the buffer solution, ∆ρ the density

difference between this interface, and g the gravitational acceleration.

Knowing ∆ρ experimentally, we will deduce the interfacial tension between the protein

droplets and the buffer solution. We can then find the viscosity of the protein droplet from the

measured capillary velocity.
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As presented in this chapter, soft PDMS surfaces can serve as a soft in-vitro model environ-

ment to study biological processes such as liquid-liquid phase separation. In the next chapter,

we will introduce simple liquid systems with higher surface tension than the biological fluids

wetting on a soft PDMS surface to address the recent debate in dynamical soft wetting.

5.5 Appendix

(a)

(b)

Figure 5.6: (a) Time evolution of the width d of the liquid meniscus formed between two merging
protein droplets. Different droplet sizes are presented. (b) Re-scaled width as a function of time
for the same droplet sizes.
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Droplet R0[µm] h0[µm] γ
µ [µm/s]

1 3.97 3.75 10.1

2 5.34 4.90 9.95

3 2.21 2.77 5.07

4 3.23 3.34 4.44

5 4.00 3.75 7.88

6 1.63 2.38 4.87

7 2.50 2.94 9.32

8 3.37 3.61 8.07

9 7.11 5.72 16.3

10 5.59 6.05 8.52

11 8.28 7.09 13.9

12 9.33 7.13 14.9

13 3.95 4.76 2.13

14 6.13 6.17 7.23

15 5.48 5.08 11.6

16 5.93 5.51 8.17

Table 5.1: Experimental measurements of the droplet dimensions R0, h0, and the extracted
capillay velocity γ

µ of corresponding coalescing tau protein droplets
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6.1 Abstract

The surface mechanics of soft solids are important in many natural and technological appli-

cations. In this context, static and dynamic wetting of soft polymer gels has emerged as a

versatile model system. Recent experimental observations have sparked controversial discus-

sions of the underlying theoretical description, ranging from concentrated elastic forces over

strain-dependent solid surface tensions, to poroelastic deformations or the capillary extraction

of liquid components in the gel. Here we present measurements of the shapes of moving wetting

ridges with high spatio-temporal resolution, combining different wetting phases (water, FC-70,

air) on top of different ultra-soft PDMS gels (∼ 100Pa). Comparing our experimental results

to the asymptotic behavior of linear visco-elasto-capillary theory in the vicinity of the ridge,

we separate reliable measurements from potential resolution artifacts. Remarkably, we find

that the commonly used elastocapillary scaling fails to collapse the ridge shapes, but, for small

normal forces, yields a viable prediction of the dynamic ridge angles. We demonstrate that

neither of the debated theoretical models delivers a quantitative description, while the capillary

extraction of an oil skirt appears to be most promising.

73
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6.2 Introduction

Wetting of soft materials has recently become an intensely studied field of research [119], with

rich dynamics [120, 121, 122, 123, 124, 125] and applications from biology [126] to soft electron-

ics [127]. Reticulated polymer networks, typically swollen by a liquid fraction of the polymer

itself [128, 124], are commonly used materials in applications and fundamental research. Typi-

cally, these materials are so soft that they can be deformed by the capillarity of their surfaces,

i.e., a solid capillary pressure [129]. On long timescales, the liquid fraction in the gel can rear-

range, leading to poroelastic relaxation and shape adaptation [124, 130]. On small scales, these

materials thus behave similar to liquids, dominated by capillary effects. In contrast to liquids,

on large scales, these materials behave like solids, resisting to permanent loads with a finite

storage modulus [131, 132, 133]. This dual nature of these materials poses intriguing scientific

questions, especially when it comes to their response to localized loads, in which the capillary

and elastic behaviors both contribute.

It is commonly assumed that a three-phase contact line, formed by a liquid meniscus ending

on the surface of a soft solid, provides a near-perfect line load, concentrated to molecular

scales [134, 135, 119]. Due to its fundamental and practical relevance, this problem received

enormous attention during the last decade [136, 119]. Pioneering work showed that the motion

of contact lines on soft materials is limited by dissipation in the solid, not the liquid, which is

called viscoelastic braking [134, 135]. The notion that the local force balance at the three-phase

line is of capillary instead of elastic origin was experimentally verified in a series of seminal

papers by Style et al. [137, 138]. Thus, it is believed that this force balance is equivalent to

what is known as Neumann’s balance for liquid three-phase lines [139].

A purely capillary force balance at a three-phase line is only possible if the three surface

tensions fulfill a certain inequality, namely that none of the surface tensions is larger than the

sum of the other two:

γi <
∑
j ̸=i

γj , (6.1)

where the indices i, j ∈ {LA, SL,SA} indicate the interface between adjacent phases (liquid

(“L”), ambient (“A”), and solid (“S”)). Equivalently, the spreading parameter must be negative

for any combination of the three phases. Most of the static and dynamic soft wetting experiments

in the past have been conducted for materials where this balance is actually in question, i.e.,

water/air on cross-linked polydimethylsiloxane (PDMS): The liquid precursor in the soft solid,

typically linear PDMS chains, would spread at the interface of the other two phases rather than

forming a stable three-phase line. Still, well-defined angles have been observed experimentally

at the three-phase line [137, 138, 140, 141]. Recently, a debate on the contributing forces has

emerged, and various mechanisms that could alter the force balance have been proposed, both

in static and dynamic situations, including strain-dependent solid surface tensions [142, 143,

144, 145, 146, 147, 148, 133], surface adaptation [149], concentrated line loads due to non-linear

elastic bulk stresses [150, 151], geometric and non-linear rheological effects [152, 153], as well

as extraction of free polymer chains from the gel [154, 128, 155, 156, 157].

Here we revisit this problem, starting with a liquid combination that actually does allow a
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Figure 6.1: (a) A cuvette with a parabolic cavity is partially filled with two immiscible phases
(bottom, ‘L’: FC-70 or water; top, ‘A’: water or air). The motion of the meniscus between the
two phases and the solid wetting ridge is observed with a shadowgraphy setup. (b) Dynamic
wetting ridges under an FC-70/air meniscus. Top: Wetting ridge of a 70Pa gel traveling with
v = 1.63 × 10−3mm/s (b.1), and v = 9.60 × 10−2mm/s (b.2). Bottom: Wetting ridge of a
300Pa gel traveling with v = 2.06 × 10−2mm/s (b.3), and v = 1.36mm/s (b.4). Right scale
bars refer to ℓ, the elastocapillary length of each PDMS gel. (c) Schematic representation of
geometry of static (c.1) and moving (c.2) wetting ridges. θs is the opening angle of the ridge,
and φ indicates rotation of its bisector. θeq and θ are equilibrium and dynamic liquid contact
angles, respectively.

stable force balance at the three-phase line, even when the liquid precursor to the soft solid, i.e.,

the un-crosslinked substrate material, is considered. In this case, the deformations also remain

relatively small, and linear visco-elasto-capillary theory is expected to hold near quantitatively.

We shadowgraphically visualize wetting ridges at high spatio-temporal resolution (Figure 6.1),

for various substrate materials and wetting liquids, to test the existing scaling relations. With

this approach, we show that neither of the former explanation attempts [143, 144, 145, 146,

147, 148, 133, 149, 150, 151, 154, 128, 155, 156, 157] delivers a consistent description of the

observations.

6.3 Experimental

To obtain the shapes of wetting ridges at high spatio-temporal resolution, we performed shad-

owgraphy on cylindrical cavities inside blocks of transparent PDMS gels, analogous to previous

studies [140, 141]. Briefly, the mixed liquid ingredients of the gel formulation are spun at high

speed inside a standard optical cuvette while the gel cures. A bubble entrapped in the cuvette

is elongated along the rotation axis due to centrifugal forces, forming a stable cylindrical cavity

(R ∼ 2mm) when the gel is cured. The thickness of the gel layer between the cavity surface

and the cuvette inner wall is h0 ∼ 2mm. The surface of the cavity is observed through the

gel in “grazing incidence”, using a long-working distance microscope (Infinitube with Olympus

Objective) and a high-speed camera (Phantom VEO 4K). The cavity is illuminated from behind

to observe the shadow generated by refraction at the cavity surface (see Figure 6.1). In con-

trast to earlier experiments where a diffuse illumination was used, here we used a Köhler-type
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collimated light source, focused into the imaging plane by a 5x Mitutoyo microscopy objective.

Refraction of light at the cavity surface casts a shadow, while reflection of the collimated light

at the gel surface creates a narrow bright line that enhances the visualization of the surface

profile. We estimate the resolution of this imaging setup to ∼ 2 µm, but exclude any data closer

than ∼ 4 µm to the ridge tip from the analysis, to avoid picking up optical artifacts. Surface

profiles are extracted from the shadowgraphs by first calculating the mean intensity gradient

in gaussian-weighted neighborhoods (standard deviation ∼ 3 px) and determining local max-

ima of the magnitude of the gradient along the direction of the gradient. Due to the apparent

asymmetry of the wetting ridge, we fit each side of the contact line with a separate, empirical

shape. For the left hand side (in contact with phase ’L’, Figure 6.1 (b)), the profile is fitted

with a third order polynomial function, h(x) = a1 + b1x + c1x
2 + d1x

3. For the right hand

side profile (in contact with phase ’A’, Figure 6.1 (b)) we used h(x) = a2 + b2 log (c2 + x). In

addition to the ridge profile, we obtain an estimate of the dynamic liquid contact angle relative

to the undeformed substrate, by monitoring the shadow of the liquid meniscus through the

cavity. At the center of the cavity, distortion from the lensing effect of the cavity is minimal,

and the meniscus position can be determined precisely. Since the capillary length and the ridge

location are known, and the capillary number remains very small, the liquid angle at the ridge

can be determined.

As gels, we used three different formulations. As a very soft gel, we used Dow Corning CY52-

276, mixing components A and B in a mass ratio of 1.3:1, to obtain zero-frequency storage

modulus G0 ∼ 70Pa. For slightly stiffer gels around 300Pa, we used custom formulations,

based on a vinyl-end-functionalized PDMS prepolymer (DMS-V31, Gelest) and two different

methylhydrosiloxane-dimethylsiloxane copolymers (HMS-053 and HMS-082, Gelest) as cross-

linker, and a platinum-complex catalyst (SIP6831.2, Gelest); The preparation procedure was

analogous to Ref. [143]. We first prepared two stock mixtures, base and catalyst (component A),

and base and cross-linker (component B), in proportions that the desired ratio of base polymer

to cross-linker in the final gel formulation was achieved by mixing components A and B at a

1:1 mass ratio. A gel with G0 ∼ 300Pa was obtained with 97.30 wt% of DMS-V31 and 2.70

wt% of HMS-053, estimating a stoichiometric ratio of vinyl to hydride groups of 3.8. Figure 6.2

shows the rheometric spectra of the two gels, where the viscoelastic rheology can be fitted by

the Chasset-Thirion constitutional model, µ(ω) = G′(ω)+ iG′′(ω) = G0[1+ (i ωτ)n], with zero-

frequency storage modulus G0, time scale τ , and rheological exponent n [135]. A third gel with

G0 ∼ 340Pa was obtained with 96.78 wt% of DMS-V31 and 3.22 wt% of HMS-082, estimating a

stiochiometric ratio of vinyl to hydride groups of 2.1. This gel was intentionally prepared with a

different cross-linker molecule and a different stoichiometric ratio of the functional groups, but a

modulus comparable to the previous one. We repeated all experiments on the third gel, finding

nearly identical profiles as for the 300Pa gel. Thus in the following, we will focus exclusively

on the 70Pa and 300Pa gels. All cavities were stored for a few days prior to use, to achieve

stationary gel and surface states [158].

The wetting ridge is formed on the inside of the cavity by the meniscus of a liquid that fills

the bottom half of the cavity, leaving the upper half exposed to ambient air. As liquids, we used

a fluorinated oil, FC-70 (Sigma) and milli-Q water (resistivity 18.1MΩcm). We also performed
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Figure 6.2: Rheometric spectra of the two main gels used (symbols), together with fits of the
Chasset-Thirion constitutional model (lines). Blue: Dow-corning CY52-276 A/B, mixed 1.3:1
(G0 ∼ 70Pa). Green: Gelest DMS-V31+HMS-053 (G0 ∼ 300Pa); Closed symbols: G′; Open
symbols: G′′.

Figure 6.3: Wetting ridge profiles extracted from the shadowgraphic images. Blue curves:
profiles of gel with G0 ∼ 70Pa, green curves: profiles of gel with G0 ∼ 300Pa. (a) Profiles in
physical units. A vertical offset has been added to arrange the profiles conveniently.(b) Profiles
scaled with ℓ in y, and ℓs in x.

experiments where the FC-70 meniscus was covered with milli-Q water, to obtain an additional

set of solid and liquid surface tensions. For notational convenience, we use the index “L” to

denote the liquid phase toward the bottom of the cavity, and “A” for the ambient, upper phase,

which can be air or water (Figure 6.1a).

The motion of the meniscus was induced by injecting liquid into the bottom phase of the

cavity, using a Nemesys syringe pump with a Hamilton gas tight syringe, connected to a needle

that sticks through the liquid meniscus. Importantly, these syringe pumps generate virtually

no stick-slip motion in their actuators [159], allowing for truly stationary motion of the menisci.

All experiments were preformed at room temperature, ∼ (22± 1) ◦C.

6.4 Wetting Ridge Profiles

Figure 6.3 (a) shows the surface profiles of moving wetting ridges induced by an FC-70/air

meniscus on two gels, withG0 ∼ 70Pa (blue) andG0 ∼ 300Pa (green), and for various velocities,

increasing from top to bottom. The profiles have been shifted along the vertical axis for a
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convenient arrangement. We define the elastocapillary length using the normal force that the

liquid interface exerts at equilibrium, ℓ = γ sin θeq/G0, where γ is the liquid surface tension and

θeq is Young’s angle, as a scale for the ridge height. These elastocapillary lengths are indicated

as scale bars in Figure 6.3(a). According to linear theory [160], the horizontal length scale ℓs =

Υs/G0 involves the solid surface tension Υs, which is not known a priori, typically different on

either side of the ridge, and may, in addition, depend on the surface strain. To obtain a suitable

estimate for a mean ℓs, we extract the solid opening angle θs (see Figure 6.1) from the profiles

and calculate an effective Υs from the vertical force balance, 2Υs sin((π − θs)/2) = γ sin θeq.

The profiles, scaled with ℓ and ℓs on vertical and horizontal axes, respectively, are shown in

Figure 6.3(b), again shifted vertically to align the tips of the ridges. The physical contact

line velocities of the displayed profiles have been chosen such that they become comparable

when scaled with the characteristic velocity, v∗ = Υs/(G0τ) [160, 140]. Apparently, the profile

shapes collapse near the ridge tip for dimensionless velocities v/v∗ < 1. For dimensionless

speeds v/v∗ > 1, a small deviation near the tips can be seen. However, this deviation is in

the range where optical artifacts due to the corner cannot safely be excluded anymore (see

Figure 6.3b). Quite remarkable though, despite their collapse at small |x|, the scaled profiles

deviate significantly already for |x| ∼ 0.2ℓs. If the regular visco-elasto-capillary theory [135,

160] would apply, the scaled profiles should collapse up to |x| ∼ ℓs.

A sharp fold at the surface of elastic half space, as induced by a contact line, exhibits a

regular strain energy density but generates a logarithmic pressure singularity, both in finite

strain and in linear theory [161, 162]. For a wetting ridge, the surfaces next to the fold are free

and subject to solid capillarity. Thus, the pressure singularity manifests itself in a logarithmic

divergence of the curvature of the solid surface, which has been shown in finite strain numerical

simulations and experiments [162, 163]. Note that the slopes and thus the contact angles remain

regular because the logarithmic singularity is integrable.

Now two questions arise: (i) can the ridge angles be determined faithfully from our experi-

ments, i.e., do our experiments resolve scales on which the slopes have substantially converged

to the angles at the three-phase line? (ii) does viscoelastic dissipation in moving wetting ridges

generate some kind of singularity that might enter the force balance, or at least discredit the

measured angles?

To address these questions, we first analyze the solid shape in the vicinity of the contact line

in the framework of linear viscoelasticity, solving for the slope h′(x) of a wetting ridge moving

at velocity v. We scale x by ℓs, h
′
by ℓ, and v by v∗. The Fourier transform of the slope is

readily obtained following [160]:

ĥ′(q) =
−i q

µ(v q)/χ(q) + q2
, (6.2)

where q is the wave number in units of ℓ−1
s , and χ(q) is the Green’s function for the geometry

of the solid. The solution in real space h′(x) is obtained by Fourier inversion of ĥ′(q). Here we

are primarily interested in the properties of the solution near the tip of the ridge, well below

the elastocapillary length, while the outer length, i.e. the wall thickness of the soft cavity, is

much larger than ℓs. Thus, the elastic behavior can locally be approximated by an elastic half
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Figure 6.4: Asymptotic surface slopes of moving wetting ridges for small x and v, with n = 1/2
(left: linear scale. right: double-logarithmic scale after subtracting the slope at x = 0). The
asymmetric component (blue) corresponds to a static ridge and is independent of v to leading
order. The symmetric component (red) scales as vn and converges much slower to the limiting
value at the contact line.

space, i.e. χ(q) ∼ (2|q|)−1.

To analyze of the shape near the tip, we expand Equation (6.2) into real and imaginary

parts, and those separately for small v:

ĥ′(q) =
−i q

2|q|+ q2
− vn

|q|n sin nπ
2

2 + 2|q|+ q2/2
+O(vn+1). (6.3)

Physically, the small-v expansion corresponds to approximating the symmetric component of

the ridge shape by the static solution because the leading-order consequence of dissipation is

the emergence of an antisymmetric component in the shape, close to the tip. The imaginary

part in Equation (6.3) resembles the static solution and carries a slope discontinuity at x = 0,

encoded in the ∼ q−1 asymptote for large q. The real part introduces a symmetric component

∼ vn to the slope due to viscoelastic dissipation.

Equation (6.3) can be inverted analytically to obtain a lengthy expression, plotted in Fig-

ure 6.4, which shows the following asymptotic behavior at small x:

h′(x) ∼ − signx
2 − 2x (ln 2|x|+γE−1

π

− vn
(
2n−1n sec nπ

2 +
2Γ(n−1) sin2 nπ

2
π |x|1−n

)
,

(6.4)

where γE = 0.5772 . . . is Euler’s constant. The first line of Equation (6.4) resembles the asym-

metric component of the slope (blue lines in Figure 6.4a), which is identical to the static solution.

Its slope discontinuity at x = 0 that represents the Neumann balance. Such sharp surface fold

introduces a log-singular elastic stress in its vicinity which, by elastocapillarity, is translated

into a log-singular surface curvature. The second line represents the symmetric component

of the slope (red lines in Figure 6.4a), which is caused by dissipation and scales as vn. The

constant component corresponds to a rotation of the ridge tip, which had already been derived

earlier [160]. In addition, one can identify an algebraic divergence of stress and curvature,

h′′ ∼ x−n. This singularity is also integrable across the contact line, does not generate a line

force, and the Neumann angles remain well defined. Recent numerical simulations showed that

the behavior of the viscoelastic stress is qualitatively maintained for finite strain viscoelasticity
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when using an equivalent relaxation law [164].

Figure 6.4(b) shows the deviation of the dissipative (symmetric, red) and static (asym-

metric,blue) slope components from their values at the contact line, scaling the symmetric

component also with vn, on logarithmic scales. The dissipative component of stress and thus

surface curvature diverges much stronger than the elastic component, such that the correspond-

ing components of the slope converges much slower to its value at the contact line. At a distance

∼ ℓs/10, the static component of the slopes deviates by ∼ 20% from the value at the contact line

(h′(x = ±0, v = 0) = ∓1/2), while the corresponding deviation of the viscoelastic component

remains much stronger unless the contact line speed is much smaller than the elastocapillary

speed. Thus in both, experiments and simulations, resolutions well beyond ∼ ℓs/10 are required

to correctly resolve the solid contact angles.

In order to estimate the actual surface slopes at the contact line and thus θSL and θSA (see

Figure 6.1c) from the profiles shown in Figure 6.3, we use the asymptotic result of the linear

theory to perform a reasonable extrapolation below our resolution limit, noting that finite strains

might yield quantitatively different results. For the softer gel, the resolution limit is around

ℓs/40, for which a residual deviation is expected to be small. For the stiffer gel, however, we

achieve only ℓs/10, and non-linear effects, especially for the viscoelastic component, might still

show significant deviations.

6.5 Quasi-Static Ridge Angles

Instead of measuring truly static ridges, we here extrapolate the solid angles of moving wetting

ridges for v → 0. This has two advantages: on the one hand, we avoid the ambiguity of

a possible residual velocity, which can be as small as 1 nm/s; On the other hand, we avoid

excessive poroelastic deformation, which occurs on long timescales, most noticeable for wetting

ridges that have been residing at the same location for extended periods of time, although

poroelastic relaxation will still be present [124, 165]. Extrapolating our measurements of θSL

and θSA for v → 0, we obtain θSL ∼ θSA ∼ 17◦ for FC-70/air, independent (within the errors

∼ ±1◦) of the stiffness of the gel. These values match almost perfectly to those reported on

static FC-70 droplets on PDMS in air, using confocal microscopy to localize surface-attached

beads [137]. We also tested FC-70/water and water/air on all our gels. For FC-70/water,

we obtain θSL ∼ θSA ∼ 34◦, again independent of the gel stiffness. For water/air, we obtain

θSL ∼ θSA ∼ 50◦ for the 70Pa gel, and θSL ∼ θSA ∼ 45◦ for the 300Pa gel. The angles of the last

case are most likely suffering from a resolution problem, since the true non-linear stress might

be quantitatively different from the linear model. Also, x-ray microscopy experiments yielded

different values for this case [138]. Remarkably, however, we always find symmetric ridge tips,

independent of the gel or the liquid combination.

Since cross-linking of PDMS leaves the molecular interactions of the PDMS chains largely

unchanged, it is instructive to compare the observed angles to the Neumann angles against

liquid PDMS. Employing a Neumann construction, using the surface tensions of the liquids

against each other and the liquid PDMS base polymer (see table 6.1), one would expect θs =

π − θSL − θSA ∼ 115◦ for FC-70/air on PDMS. The validity of this Neumann construction is
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Figure 6.5: An air bubble trapped at the interface of liquid PDMS (top) and FC-70 (bottom).
The Neumann angle in the PDMS phase is extracted from the drop (red dashed line) and
meniscus (blue dashed line) contours.

confirmed in a direct measurement of the angle in the liquid PDMS phase ∼ 115◦, using an

air bubble at the interface between bulk FC-70 and liquid PDMS (Figure 6.5). This value

is significantly smaller than our measurement for wetting on cross-linked PDMS, which gives

θs ∼ 146◦ for FC-70/air on all cross-linked gels.

Since bulk elasticity does not generate line forces at sharp folds [161, 166, 162], the devi-

ation must be caused by altered surface tensions or other, surface-bound phenomena. Several

hypotheses have been proposed to explain this deviation in the Neumann angles between liq-

uid and cross-linked PDMS: (i) the cross-linking reaction alters the surface tension [167], (ii)

strain-dependent solid surface tension [143], and (iii) extraction of liquid PDMS precursor from

the network into a wetting skirt that, in addition, may [154, 156] or may not [124, 155, 149]

cloak the liquid-vapor surface and lower its effective tension.

For case (i), one would expect that the surface tension of cross-linked PDMS is different from

liquid PDMS, but otherwise depends only on the liquid that it is contact with. In particular,

it should not be affected by the strain at the ridge tip. This can be tested by using our three

liquid or gas phases in different combinations. Each interface composition was tested twice,

but with different Neumann angles because the exchange of the other phase yields a different

liquid-air or liquid-liquid surface tension. Again calculating surface tensions from the Neumann

balance, we obtain values that differ significantly (see table 6.2), well beyond any reasonable

experimental error estimate, so we arrive at hypothesis (ii).

For case (ii), we may use the Neumann construction preformed above to estimate the solid

surface stresses. For the case of FC-70/air on PDMS, the value we obtain matches well with

water FC-70 PDMS

air 64 18.0 19.8
water 50.6 42.4
FC-70 6.7

Table 6.1: Surface tensions in mN/m of various liquids against each other. For PDMS, we
measured the surface tensions of the non-cross-linked base polymer. For water/air, we consider
a PDMS-cloaked interface [156]. Measurement errors are ±0.5mN/m except for water/air,
which is estimated from Ref. [156] and varies ∼ ±1mN/m.
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Figure 6.6: Extended Neumann construction in the presence of a liquid skirt (light red), pre-
sumably extracted from the soft gel (bottom, yellow). Contact angles between the oil and the
gel are assumed to vanish. For cloaking of the liquid interface with oil, the Neumann angle θO
would vanish.

previous reports [137]. Solid surface tension is assumed to depend primarily on the surface

dilational strain, which can be estimated from the inclination of the surface: ϵs ∼
√

1 + (h′)2 −
1 ∼ h′. Thus, the surface strain should increase with decreasing θs. However, from table 6.2,

we notice that the surface tensions rather decrease with increasing strain. Note that the values

on the last column, for water/air on PDMS (θs ∼ 80◦) probably suffer from a large systematic

error, underestimating θSL and θSA. Park et al. reported ΥSL ∼ 16mN/m and ΥSA ∼ 59mN/m,

without taking into account cloaking [138]. Correcting their values for PDMS-cloaked water, we

would obtain ΥSL ∼ 14mN/m and ΥSA ∼ 52mN/m. Observing surface tensions that decrease

with decreasing solid angle contradicts the assumption of a strain-dependent solid surface tension

since measurements with externally stretched surfaces showed that surface stress increases with

strain [143, 162].

In case (iii), the three-phase line is no longer located at the solid surface. Instead, an oil

skirt [155, 157] with a negative laplace pressure pskirt transmits the normal force of the liquid-

liquid or liquid-air interface, γ sin θ, onto the solid, distributed over a width ℓskirt: pskirt =

γ sin θ/ℓskirt. Figure 6.6 shows a sketch of this wetting configuration. The distributed pressure

can straight-forwardly be implemented into linear visco-elastocapillary theory from [160] to

estimate the surface slopes of the gel, using a normal traction (in physical units) tn = γ sin θ ·
Θ(ℓskirt/2− |x|), with Θ(x) the Heaviside theta function. The expression for the surface slopes,

Equation (6.3), is then multiplied with the Fourier transform of the traction profile:

ĥ′(q) =
−i ℓs

ℓskirt
sin q ℓskirt

ℓs

µ(v q)/χ(q) + q2
, (6.5)

θs ∼ 146◦ θs ∼ 112◦ θs ∼ 80◦

PDMS/air 28.0 21.5
PDMS/water 53.6 56.7
PDMS/FC-70 14.3 10.5

Table 6.2: Surface stresses Υs in mN/m, obtained from the Neumann construction under various
liquid combinations on top of cross-linked PDMS gels. typical uncertainties are ±1mN/m,
except for θs ∼ 80◦, where a large systematic error cannot be ruled out.
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The surface slopes are then calculated by numerical Fourier inversion. Given the small ridge

surface slopes θSL ∼ θSA ∼ 17◦ observed for FC-70/air on PDMS gels, this model should be

near-quantitatively accurate. To obtain θs ∼ 146◦, a skirt with ℓskirt ∼ 0.86ℓs is required,

corresponding to 150 µm and 41 µm for the soft and the stiff gels, respectively. In the light

of recent direct visualizations of oil skirts for static [155] and moving [157] contact lines on

artificially swollen networks, this estimate appears unreasonably large.

Prior to extraction, the free oil phase in the PDMS gel has to be advected toward the contact

line, which is indeed predicted by non-linear poroelasticity theory [168]. Since the refractive

index of the oil and network are expected to be well-matched, poroelastic deformations remain

‘invisible’ in our experiments, i.e. showing up as bright as and thus indistinguishable from the

gel, despite their significant size. Poroelastic swelling would further reduce the effective modulus

of the gel at the tip. On the one hand, this would reduce the skirt size required to obtain the

observed θs. On the other hand, such enhanced swelling would show up in a deviation of the

typical ridge shape.

This is indeed observed in Figure 6.3(b): The scaled profiles for different gel stiffnesses

deviate significantly from each other for |x| ≳ 0.2ℓs. The elastocapillary model would predict a

good match between the profiles up to |x| ∼ ℓs because the outer length, i.e. the gel thickness,

is much larger than ℓs in both cases and does not impact the local shapes. Instead, we find a

closer match between the shapes in physical units. Given that the surface tensions are identical

for both cases, this indicates that the zero-frequency shear modulus G0 is not a good scaling

parameter here. Whether or not the observed ridge shapes can be described by, e.g., linear

poroelasticity [165] remains to be evaluated.

6.6 Dynamic ridge angles

Figure 6.7 shows the rotation of the liquid interface, θ − θeq (filled symbols), and of the ridge

bisector, φ (open symbols: experiments; red dashed line: linear visco-elasto-capillary theory),

for FC-70/air on our softer (∼ 70Pa, blue) and stiffer (∼ 300Pa, blue) gels. The rotations

have been scaled by the typical aspect ratio, i.e., ℓ/ℓs, and the velocity by the characteristic

velocity v∗. For the 70Pa gel (blue), we find a good agreement between the measured liquid

and solid rotation, as well as the prediction from linear theory. Since the wetting ridges under

FC-70/air menisci exhibit rather small surface slopes (θSL ∼ θSA ∼ 17◦), one may expect that

linear theory could deliver reasonable results here. For the 300Pa gel (green), however, we find

a deviation between the liquid rotation and the solid rotation, while the latter collapses onto the

data from the soft gel and the model. Possibly, the velocity-dependent component of the ridge

slopes has not been extracted with sufficient resolution, and thus the rotation is underestimated.

The liquid angle does not suffer from such resolution limit since the capillary number remains

very small and the meniscus shape is not expected to show significant deviations from its static

shape. Thus, the dissipation generated by the 300Pa gel appears to be increased relative to

the 70Pa gel or the theory. Finally, under the assumption of a poroelastic relaxation and/or

an extracted oil skirt, the match between theory and the softer gel would be surprising. In this

case, poroelastic dissipation or the dissipation in the skirt would have to be taken into account
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Figure 6.7: Rotation of liquid interface (θ− θeq, filled symbols) and the bisector of the wetting
ridge (φ, open symbols), scaled by the aspect ratio ℓ/ℓs = γ sin θeq/Υs as a function of velocity
scaled by the characteristic vico-elasto-capillary velocity v∗. The red dashed line shows the
result of linear visco-elasto-capillary theory.

as well. If the loss modulus of the free oil phase was similar to the cross-linked gel, however,

such a behavior could be rationalized.

Figure 6.8 shows the solid opening angle θs for all liquid combinations and the two gels,

with velocity scaled by the elastocapillary velocity v∗. We notice that for small scaled velocities

v/v∗, θs remains constant. For larger v/v∗, θs increases. The larger the liquid surface tension

γ, i.e., the larger the normal traction and the smaller θs, the earlier the detected θs increases

with v, which points to a non-linear effect that is triggered by the surface strain. The curves

for different gels, however, collapse perfectly, indicating that the time scale τ of the rheological

model correctly describes the dynamics. Previously, the velocity-dependent increase of θs has

been interpreted by a dynamical increase of the surface stresses, which yielded a quantitative

explanation for the transition to stick-slip motion [140]. Given the asymptotic behavior of the

slopes in the linear theory outlined above, resolution artifacts would, however, be expected to

manifest in a similar way. Yet, then the stiffer gel should be more prone to these artifacts,

and the collapse suggests this is not the case. Invoking again the hypothesis of poroelastic

relaxation and/or extraction of an oil skirt by the contact line, and taking into account the

non-collapse of the ridge profiles, the storage modulus in the ridge-tip region should be smaller

than the independently measured G0, and the length scales no longer depend on it. Further,

the increase in θs can be reproduced in the linear model with a distributed traction. On the

scale of the skirt, viscoelasticity significantly contributes to the force balance, and the increase

of the moduli with frequency then leads to an increase of the solid angle.

6.7 Conclusion

We have shown that both the static, and the dynamic angles at the tip of a wetting ridge can not

quantitatively be described by standard linear visco-elasto-capillary theory. The solid angle θs is

typically much larger than expected from the Neumann balance for liquid PDMS. Neither linear,

nor finite strain bulk elasticity can generate line forces at sharp surface folds [161, 162] that could

contribute to the Neumann balance. It remains open though, whether a cusp-like singularity



CHAPTER 6. MOVING WETTING RIDGES ON ULTRA-SOFT GELS 85

Figure 6.8: Solid opening angle θs as a function of velocity v, scaled by the elastocapillary
velocity v∗ = Υs/(G0τ). For small speeds, the angle remains constant, increasing only at larger
speeds. Data for soft and stiff gels collapses in its scaling. Larger γ, i.e., smaller θs, leads to an
earlier increase of θs.

of the profile, possibly combined with strain-stiffening constitutional laws, would generate a

stronger stress singularity with a non-zero integral. For the case primarily studied here, FC-

70/air on PDMS, such a singular profile is not expected. From the Neumann deconstruction

of the ridge tip, we derived surface stresses that depend on θs. We find that the stresses

decrease with θs, which seemingly contradicts measurements of the surface stress in response

to an external strain [145, 143]. We also find that surface profiles on gels of different stiffness

do not collapse, apart from a region very close (|x| ≲ 0.2ℓs) to the ridge tip, when scaled with

the elastocapillary length. This indicates that the zero-frequency loss modulus is not a good

parameter for the scaling behavior of the ridge profile. It rather motivates the existence of

poroelastic relaxation [165] or an oil skirt [155, 157] extracted from the gel by the contact line.

Despite these discrepancies for the shapes and the static properties of wetting ridges, we

find a rather good agreement between the measured rotation and the linear theory, at least for

the soft gel where we can exclude significant experimental errors due to resolution-limitations.

This points out that, should indeed poroelastic relaxation or an oil skirt be responsible for

the observed shapes, and these regions should exhibit a similar elastocapillary velocity v∗ as

the underlying gel. The measurement of the liquid angle indicates that the shadowgraphy

misses a dissipative rotation of the ridge that is localized within the last ∼ 4 µm. This could

be due to finite strain effects or high frequency components in the loss modulus that are not

detected in oscillatory rheometry. Unfortunately, with our current experimental setup, higher

spatio-temporal resolution is beyond reach. Phase contrast x-ray microscopy at a synchrotron

facility [138, 169] could reveal the ridge properties at increased resolution, and possibly identify

regions of excess dissipative stress.
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Chapter 7

Conclusion

The research work carried out during this thesis was devoted to the wetting dynamics on

soft surfaces. In this work, we formulated and utilised tailored PDMS samples of different

stoichiometry with quantified rheological properties to:

1. serve as a soft in-vitro model environment with a stiffness comparable to brain tissues in

order to study the phase separation of protein droplets.

2. investigate the dynamics of soft wetting, and address the ongoing debate of the field.

Brief summaries of the scientific results from Chapter 4, 5, and 6, and the possible outlooks

for further research will be provided in the next sections.

7.1 Tailoring polydimethylsiloxane (PDMS) elastomers of dif-

ferent mechanical properties

7.1.1 Summary

In Chapter 4, we successfully formulated various PDMS networks by tuning the stoichiometric

ratio of vinyl and silane functional groups. The rheometry of the prepared gels was conducted

to quantify their mechanical properties.

We observed that the storage modulus G0 of the network is larger (i.e more elastic) when

its corresponding stoichiometric ratio is smaller (refer to Figure 7.1 (a)). Also, the network is

stiffer when a base pre-polymer of higher molecular weight is used.

Through the swelling and extraction of PDMS samples, we concluded that the degree of

swelling of the network decreases when the network is stiffer (high storage modulus G0). The

extraction ratio increases with an increase in the stoichiometric ratio until nA/nB reaches

around 2, and starts to saturate (see Figure 7.1 (b)). This result shows that the extraction of

free oligomers by using a large amount of solvent can not be used to determine the degree of

cross-linking for soft PDMS gels. Also, the higher degree of swelling observed than the literature

shows that the swelling ratio heavily depends on the stiffness of the PDMS network.

87
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Figure 7.1: (a) Low frequency storage modulus (G0) vs stoichiometric ratio nA/nB for each
material combination. Data from Table 4.8 are represented as the transparent points. (b)
nswell, and next of PDMS samples against their corresponding stoichiometric ratio nA/nB in
toluene

7.1.2 Outlook

Interfacial extraction methods, in which the PDMS gel is not confined in a small container, can

be used to extract uncross-linked molecules in the soft PDMS networks to retain the original

shape of our samples.

Recently, there has been a growing attention on bottlebrush polymers for soft wetting stud-

ies due to the various advantages over normal linear PDMS polymers. Bottlebrush polymers

have relatively shorter side chains than normal PDMS elastomers, and have an entanglement

molecular weight of 107 g/mol, which is 3 orders of magnitude higher than that of linear

PDMS polymers [170]. It has been found that bottlebrush polymer networks can also exhibit a

low elastic modulus of around 100Pa, that they are less adhesive and have smaller amount of

uncross-linked molecules than the linear polymers[170]. Bottlebrush polymer networks consist

of four precursors (instead of two like the linear chain PDMS polymers): base, cross-linker,

side chain, and extension chain where each precursors contain either vinyl or silane functional

groups. The rheological properties of such bottlebrush polymers with different stoichiometric

ratio could be studied.
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7.2 Liquid-liquid phase separation of tau protein droplets on a

soft PDMS surface

7.2.1 Summary

In Chapter 5, we used one of our formulated PDMS gels to study the liquid-liquid phase separa-

tion of tau protein droplets on a soft surface. More specifically we investigated the coalescence

dynamics of these droplets, as presented in Figure 7.2 (a).

(a)

(b)

Figure 7.2: (a) Coalescence dynamics of tau protein droplets on a soft PDMS surface (G0 =
113Pa). Scale bar: 10 µm. Timestep: 1.10 s. Fluorescently labelled protein droplets appear in
green, and the small red dots correspond to the fluorescent particles in the PDMS gel. (b) Time
evolution of the width d of the liquid meniscus formed between two merging protein droplets.
Different droplet sizes are presented.

By investigating the time evolution of the liquid meniscus bridge width for different coa-

lescence events (see Figure 7.2 (b)), we found that tau protein droplets behave similarly to

viscous liquid droplets. Indeed, we retrieved the characteristic coalescence dynamics of viscous

droplets, as well as the associated droplet radius dependence. Furthermore, our measurements

were used to indirectly estimate the capillary velocity γ/µ, without the need of knowing the

surface tension nor the viscosity of these tau droplets.

Surprisingly, we did not observe any deformation of the soft PDMS network by the tau

protein droplets. As the PDMS surface itself is very soft and deformable (G0 = 113Pa), this

indicates that the interfacial tension between the protein droplets and the buffer solution is too

small compared the interfacial tension between the buffer and PDMS to induce a visible wetting
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ridge on the PDMS surface.

7.2.2 Outlook

In order to be able to directly observe a deformation of the surface, the elasto-capillary length

needs to be comparable to the substrate thickness. As presented in Chapter 2, the elasto-

capillary length depends on both the substrate stiffness and the surface tension (here between

a tau protein droplet and the buffer solution) as ℓ ∼ γ/G0. Thus we can think of tuning ℓ to

increase the amplitude of the surface deformation. We could try to increase the elasto-capillary

length by using an even softer PDMS substrate. However, this will no longer satisfy our main

objective of using a gel with comparable stiffness as the brain tissues. Also, the softest gel that

we have formulated so far has a stiffness of G0 ≈ 4Pa. Assuming that the protein-buffer surface

tension is γ ∼ 1 µN/m [103], the corresponding elasto-capillary length is then ℓ ∼ 0.25 µm, which

is still far smaller than the thickness of the substrate (100 µm). Therefore the deformation will

not be observed.

Instead, we could tune the interfacial tension between the PDMS substrate and the buffer

solution. As the interfacial tension between a protein droplet and the buffer is very small, the

buffer-PDMS interfacial tension has to be small enough to induce a deformation on the surface.

The surrounding liquid (mostly water) could be replaced by another one with a smaller surface

tension, but it would not model as accurately the human cytoplasm that usually consists of

water.

The capillary length of a sessile protein droplet can be used to extract the surface tension

and viscosity of the tau protein droplets. We have already obtained the capillary length (lc =

87.2 µm) of a droplet based on the image analysis of its contour as done by Ijavi, et al. [118]. By

determining the sinking speed of the droplets as a function of the droplet size, we could measure

the density contrast ∆ρ between the protein droplet and the buffer solution. The protein-buffer

interfacial tension will then be extracted, and the viscosity will be deduced from the already

resolved capillary velocity.

7.3 Moving wetting ridges on soft gels

7.3.1 Summary

In Chapter 6, we showed that both static and dynamic angles at the tip of a wetting ridge

cannot be described by linear viscoelastic capillary theory. Also, the obtained opening angle of

the solid ridge θS was much larger than what we would expect from the Neumann balance by

using the surface tension of liquid (uncured) PDMS silicone oil.

We derived surface stresses that depend on the ridge opening angle via the Neumann de-

sconstruction of the ridge tip. Contradicting the literature [43, 52], we observed a decrease in

surface stress with an increase in surface strain.

The deviation of the gel surface profiles of different stiffness (see Figure 7.3 (a))apart from a

region very close to the tip indicates that there exists an oil skirt extracted by the contact line.
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(a) (b)

Figure 7.3: (a) Wetting ridge profiles extracted from the shadowgraphic images. Blue curves:
profiles of gel with G0 = 70Pa, green curves: profiles of gel with G0 = 300Pa. Profiles are
scaled with ℓ in y, and ℓs in x. (b) Rotation of liquid interface (θ− θeq, filled symbols) and the
bisector of the wetting ridge (φ, open symbols), scaled by the aspect ratio ℓ/ℓs = γLA sin θeq/γs
as a function of velocity scaled by the characteristic vico-elasto-capillary velocity v∗ = γs/(G0τ).
The red dashed line shows the result of linear visco-elasto-capillary theory.

As shown in Figure 7.3 (b), we observed a good agreement between the measured ridge

roatation and the linear theory for the soft gel with a larger elasto-capillary length where we

can exclude experimental errors due to the resolution limit. This agreement shows that the oil

skirt exhibit a similar loss modulus as the underlying gel.

The measurement of the dynamic liquid contact angle shows that the shadowgraphy does

not capture a dissipative rotation of the ridge that is localised within the last ∼ 4 µm. This

could be due to finite strain effects or high frequency components in the loss modulus that are

not detected in oscillatory rheology. Higher spatio-temporal resoultion with our shadowgraphy

set up will not be possible.

7.3.2 Outlook

A phase contrast x-ray microscopy can be used to obtain a higher resolution experimental data

of the wetting ridge. This will hopefully identify regions of excess dissipative stress.

Also, we can study the impact of an oil skirt extracted by the contact line experimentally.

Swelling of a polymer gel by a lower molecular weight silicone oil can induce an oil skirt as

observed by Cai, et al. [49, 50]. We can investigate how does the existence of such phase

separated oil skirt can affect the dynamics of the wetting ridge.
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[154] Aurélie Hourlier-Fargette et al. “Role of uncrosslinked chains in droplets dynamics on
silicone elastomers”. Soft Matter 13.19 (2017), pp. 3484–3491. doi:
10.1039/c7sm00447h.

[155] Zhuoyun Cai et al. “Fluid separation and network deformation in wetting of soft and
swollen surfaces”. Communications Materials 2.1 (2021), pp. 1–11. doi:
10.1038/s43246-021-00125-2.

[156] Chander Shekhar Sharma et al. “Enhanced Condensation on Soft Materials through
Bulk Lubricant Infusion”. Advanced Functional Materials 32.17 (2021), p. 2109633.
doi: 10.1002/adfm.202109633.

[157] Lukas Hauer et al. “Phase Separation in Wetting Ridges of Sliding Drops on Soft and
Swollen Surfaces”. arXiv (2022), p. 2208.11177. url: arxiv.org/abs/2208.11177.

[158] Justin D. Glover et al. “Interfacial strength dominates fold formation in microscale,
soft static friction”. arXiv (2022), p. 2203.09575. url: arxiv.org/abs/2203.09575.

[159] Zida Li et al. “Syringe-pump-induced fluctuation in all-aqueous microfluidic system
implications for flow rate accuracy”. Lab Chip 14 (4 2014), pp. 744–749. doi:
10.1039/C3LC51176F.

[160] S. Karpitschka et al. “Droplets move over viscoelastic substrates by surfing a ridge”.
Nat. Commun. 6 (2015), p. 7891. doi: 10.1038/ncomms8891.

[161] Manohar Singh and Allen C. Pipkin. “Note on Ericksen's problem”. Zeitschrift für
angewandte Mathematik und Physik ZAMP 16.5 (1965), pp. 706–709. doi:
10.1007/bf01590971.

[162] A. Pandey et al. “Singular Nature of the Elastocapillary Ridge”. Phys. Rev. X 10.3
(2020), p. 031067. doi: 10.1103/physrevx.10.031067.

[163] M. A. J. van Limbeek et al. “Pinning-induced folding-unfolding asymmetry in adhesive
creases”. Phys. Rev. Lett. 127 (2021), p. 028001. doi:
10.1103/PhysRevLett.127.028001.

[164] Martin H. Essink. “Soft Contact: from wetting to adhesion”. PhD thesis. Universiteit
Twente, 2022.

[165] Caroline Kopecz-Muller et al. “Mechanical response of a thick poroelastic gel in
contactless colloidal-probe rheology”. arXiv (2022), p. 2212.05821. url:
arxiv.org/abs/2212.05821.

[166] S. Karpitschka et al. “Soft wetting: Models based on energy dissipation or on force
balance are equivalent”. Proc. Natl. Acad. Sci. U.S.A. 115.31 (2018), E7233–E7233.
doi: 10.1073/pnas.1808870115.

https://doi.org/10.1038/s41467-022-31910-3
https://doi.org/10.1039/c7sm00447h
https://doi.org/10.1038/s43246-021-00125-2
https://doi.org/10.1002/adfm.202109633
arxiv.org/abs/2208.11177
arxiv.org/abs/2203.09575
https://doi.org/10.1039/C3LC51176F
https://doi.org/10.1038/ncomms8891
https://doi.org/10.1007/bf01590971
https://doi.org/10.1103/physrevx.10.031067
https://doi.org/10.1103/PhysRevLett.127.028001
arxiv.org/abs/2212.05821
https://doi.org/10.1073/pnas.1808870115


BIBLIOGRAPHY 104

[167] Weiwei Zhao et al. “The role of crosslinking density in surface stress and surface energy
of soft solids”. Soft Matter 18.3 (2022), pp. 507–513. doi: 10.1039/d1sm01600h.

[168] Mees M. Flapper et al. “Reversal of Solvent Migration in Poroelastic Folds”. arXiv
(2022), p. 2209.00887. url: arxiv.org/abs/2209.00887.

[169] S. J. Park et al. “Self-spreading of the wetting ridge during stick-slip on a viscoelastic
surface”. Soft Matter 13.44 (2017), pp. 8331–8336. doi: 10.1039/c7sm01408b.

[170] Li-Heng Cai et al. “Soft Poly (dimethylsiloxane) Elastomers from Architecture-Driven
Entanglement Free Design”. Advanced Materials 27.35 (2015), pp. 5132–5140.

https://doi.org/10.1039/d1sm01600h
arxiv.org/abs/2209.00887
https://doi.org/10.1039/c7sm01408b

	Table of Contents
	Introduction
	Motivation
	Objectives
	Outline of this thesis

	Surface wetting: theoretical background
	Wetting on rigid surfaces
	Static wetting
	Dynamic wetting

	Wetting on soft surfaces
	From purely elastic to viscoelastic materials
	Static wetting on soft surfaces
	Dynamic wetting

	Wetting on real soft surfaces
	PDMS
	Shuttleworth effect
	Poroelasticity
	Extraction of solvents by a contact line

	Debate
	Shuttleworth effect for polymer gels
	Validity of Neumann's law


	Materials and experimental methods
	Materials
	PDMS preparation
	Swelling and extraction
	Flat substrate preparation
	Cavity preparation

	Experimental methods
	Rheometry
	Surface tension measurement
	Confocal microscopy
	Shadowgraphy
	Image analysis


	Tailoring polydimethylsiloxane (PDMS) elastomers of different mechanical properties
	Introduction
	Experimental methods
	PDMS sample preparation
	Rheometry of prepared PDMS samples
	Extraction of uncross-linked molecules

	Results and discussion
	Mechanical properties of prepared PDMS samples
	Degree of swelling and extraction of PDMS networks
	Conclusion
	Outlook

	Appendix

	Liquid-liquid phase separation of tau protein droplets on a soft PDMS surface
	Motivation
	Experimental methods
	Results and discussion
	Conclusion and outlook
	Appendix

	Moving wetting ridges on ultra-soft gels
	Abstract
	Introduction
	Experimental
	Wetting Ridge Profiles
	Quasi-Static Ridge Angles
	Dynamic ridge angles
	Conclusion
	Acknowledgments

	Conclusion
	Tailoring polydimethylsiloxane (PDMS) elastomers of different mechanical properties
	Summary
	Outlook

	Liquid-liquid phase separation of tau protein droplets on a soft PDMS surface
	Summary
	Outlook

	Moving wetting ridges on soft gels
	Summary
	Outlook


	Bibliography

